A modified adaptive Lasso for identifying interactions in the Cox model with the heredity constraint
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2014.06.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Radchenko, Peter & James, Gareth M., 2010. "Variable Selection Using Adaptive Nonlinear Interaction Structures in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1541-1553.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Wei Lin & Jinchi Lv, 2013. "High-Dimensional Sparse Additive Hazards Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 247-264, March.
- Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
- Choi, Nam Hee & Li, William & Zhu, Ji, 2010. "Variable Selection With the Strong Heredity Constraint and Its Oracle Property," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 354-364.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Du, Mingyue & Zhao, Xingqiu & Sun, Jianguo, 2022. "Variable selection for case-cohort studies with informatively interval-censored outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
- Yu, Ke & Luo, Shan, 2024. "Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
- Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
- Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
- Bhatnagar, Sahir R. & Lu, Tianyuan & Lovato, Amanda & Olds, David L. & Kobor, Michael S. & Meaney, Michael J. & O'Donnell, Kieran & Yang, Archer Y. & Greenwood, Celia M.T., 2023. "A sparse additive model for high-dimensional interactions with an exposure variable," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
- Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016.
"The lasso for high dimensional regression with a possible change point,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers CWP26/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lian, Heng & Li, Jianbo & Hu, Yuao, 2013. "Shrinkage variable selection and estimation in proportional hazards models with additive structure and high dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 99-112.
- Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
- Na You & Shun He & Xueqin Wang & Junxian Zhu & Heping Zhang, 2018. "Subtype classification and heterogeneous prognosis model construction in precision medicine," Biometrics, The International Biometric Society, vol. 74(3), pages 814-822, September.
- T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
- Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
- Yingying Fan & Jinchi Lv, 2014. "Asymptotic properties for combined L1 and concave regularization," Biometrika, Biometrika Trust, vol. 101(1), pages 57-70.
- Engler David & Li Yi, 2009. "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, February.
- Fan Feng & Guanghui Cheng & Jianguo Sun, 2023. "Variable Selection for Length-Biased and Interval-Censored Failure Time Data," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
- Ryan A. Peterson & Joseph E. Cavanaugh, 2022. "Ranked sparsity: a cogent regularization framework for selecting and estimating feature interactions and polynomials," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 427-454, September.
- Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
- Yingying Fan & Jinchi Lv, 2013. "Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1044-1061, September.
More about this item
Keywords
Modified adaptive Lasso; Oracle property; Penalized partial likelihood; Regularization; Variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:93:y:2014:i:c:p:126-133. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.