IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i9p2193-2200.html
   My bibliography  Save this article

Sliding mode control for multi-agent systems under a time-varying topology

Author

Listed:
  • Lijing Dong
  • Senchun Chai
  • Baihai Zhang
  • Sing Kiong Nguang

Abstract

This paper addresses the tracking problem of a class of multi-agent systems under uncertain communication environments which has been modelled by a finite number of constant Laplacian matrices together with their corresponding scheduling functions. Sliding mode control method is applied to solve this nonlinear tracking problem under a time-varying topology. The controller of each tracking agent has been designed by using only its own and neighbours’ information. Sufficient conditions for the existence of a sliding mode control tracking strategy have been provided by the solvability of linear matrix inequalities. At the end of this work, numerical simulations are employed to demonstrate the effectiveness of the proposed sliding mode control tracking strategy.

Suggested Citation

  • Lijing Dong & Senchun Chai & Baihai Zhang & Sing Kiong Nguang, 2016. "Sliding mode control for multi-agent systems under a time-varying topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(9), pages 2193-2200, July.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:9:p:2193-2200
    DOI: 10.1080/00207721.2014.979335
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2014.979335
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2014.979335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2005. "Delay-dependent exponential stability of cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1363-1369.
    2. Fenglan Sun & Zhi-Hong Guan, 2013. "Finite-time consensus for leader-following second-order multi-agent system," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(4), pages 727-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2009. "Exponential stability for nonautonomous neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1152-1157.
    2. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    3. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    4. Lou, Xu Yang & Cui, Bao Tong, 2006. "Global asymptotic stability of delay BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 1023-1031.
    5. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2007. "Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 997-1005.
    6. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    7. Li, Dong & Yang, Dan & Wang, Hui & Zhang, Xiaohong & Wang, Shilong, 2009. "Asymptotical stability of multi-delayed cellular neural networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 218-224.
    8. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    9. Lien, Chang-Hua & Chung, Long-Yeu, 2007. "Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1213-1219.
    10. Yu, Ker-Wei & Lien, Chang-Hua, 2008. "Global exponential stability conditions for generalized state-space systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 920-927.
    11. Feng, Wei & Yang, Simon X. & Fu, Wei & Wu, Haixia, 2009. "Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 414-424.
    12. He, Xiaoyan & Wang, Qingyun, 2017. "Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 65-76.
    13. Sun, Jitao & Wang, Qing-Guo & Gao, Hanqiao, 2009. "Periodic solution for nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1423-1427.
    14. Zhang, Qiang & Xu, Xiaopeng Wei Jin, 2007. "Delay-dependent global stability results for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 662-668.
    15. Cui, Bao Tong & Hua, Min Gang, 2006. "Robust passive control for uncertain discrete-time systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 331-341.
    16. Zhao, Weirui & Tan, Yong, 2007. "Harmless delays for global exponential stability of Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(1), pages 47-57.
    17. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2006. "Stability analysis for cellular neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 331-336.
    18. Lou, Xu Yang & Cui, Bao Tong, 2008. "Global robust dissipativity for integro-differential systems modeling neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 469-478.
    19. Lien, Chang-Hua & Yu, Ker-Wei & Lin, Yen-Feng & Chung, Yeong-Jay & Chung, Long-Yeu, 2009. "Exponential convergence rate estimation for uncertain delayed neural networks of neutral type," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2491-2499.
    20. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:9:p:2193-2200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.