Computing a Group of Polynomials over a Galois Field in FPGA Architecture
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alireza Ermagun & David Levinson, 2018. "Spatiotemporal traffic forecasting: review and proposed directions," Transport Reviews, Taylor & Francis Journals, vol. 38(6), pages 786-814, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gutierrez-Lythgoe, Antonio, 2023. "Movilidad urbana sostenible: Predicción de demanda con Inteligencia Artificial [Sustainable Urban Mobility: Demand Prediction with Artificial Intelligence]," MPRA Paper 117103, University Library of Munich, Germany.
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
- Huan Ngo & Sabyasachee Mishra, 2023. "Traffic Graph Convolutional Network for Dynamic Urban Travel Speed Estimation," Networks and Spatial Economics, Springer, vol. 23(1), pages 179-222, March.
- Mohandu Anjaneyulu & Mohan Kubendiran, 2022. "Short-Term Traffic Congestion Prediction Using Hybrid Deep Learning Technique," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
- Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
- Chikaraishi, Makoto & Garg, Prateek & Varghese, Varun & Yoshizoe, Kazuki & Urata, Junji & Shiomi, Yasuhiro & Watanabe, Ryuki, 2020. "On the possibility of short-term traffic prediction during disaster with machine learning approaches: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 91-104.
More about this item
Keywords
FPGAs; IP-cores; group of polynomials; Galois field;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3251-:d:703221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.