IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i18p5405-5422.html
   My bibliography  Save this article

Coordinating batching decisions in manufacturing networks

Author

Listed:
  • Durk-Jouke van der Zee

Abstract

Family-based dispatching heuristics aim for improving job flow times by reducing time spent on set-ups. They realise set-up efficiencies by batching similar types of jobs. By their intuitiveness and the simplicity of their decision logic, they may contribute to an easy to implement and viable strategy in many practical settings. Similar to common dispatching rules most existing family-based dispatching heuristics are myopic, i.e. their decision scope is restricted to a single manufacturing stage. Hence, they neglect opportunities for improving shop performance by coordinating batching decisions with other manufacturing stages. Case examples from industry underpin the need for exploring these opportunities. We do so by studying a simple two-stage flow shop, entailing a serial and a batch stage. To facilitate shop coordination we propose extensions to existing family-based dispatching heuristics. Extended heuristics seek to further increase set-up efficiencies by allowing for upstream job re-sequencing, and pro-active set-ups, i.e. set-ups that may be initiated prior to the arrival of a job. Outcomes of an extensive simulation study indicate significant performance gains for extended heuristics vs. existing heuristics. Performance gains are largest for moderate and high set-up to run-time ratios.

Suggested Citation

  • Durk-Jouke van der Zee, 2017. "Coordinating batching decisions in manufacturing networks," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5405-5422, September.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:18:p:5405-5422
    DOI: 10.1080/00207543.2017.1317926
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1317926
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1317926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Durk-Jouke van der Zee, 2015. "Family-based dispatching with parallel machines," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5837-5856, October.
    3. J. William Gavett, 1965. "Three Heuristic Rules for Sequencing Jobs to a Single Production Facility," Management Science, INFORMS, vol. 11(8), pages 166-176, June.
    4. Kenneth N. McKay & Frank R. Safayeni & John A. Buzacott, 1988. "Job-Shop Scheduling Theory: What Is Relevant?," Interfaces, INFORMS, vol. 18(4), pages 84-90, August.
    5. Li, Shanling, 1997. "A hybrid two-stage flowshop with part family, batch production, major and minor set-ups," European Journal of Operational Research, Elsevier, vol. 102(1), pages 142-156, October.
    6. Jens Heger & Jürgen Branke & Torsten Hildebrandt & Bernd Scholz-Reiter, 2016. "Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6812-6824, November.
    7. Nomden, Gert & van der Zee, Durk-Jouke, 2008. "Virtual cellular manufacturing: Configuring routing flexibility," International Journal of Production Economics, Elsevier, vol. 112(1), pages 439-451, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Hao & Sheng, Lijuan & Luo, Chaorui & Kwak, Choonjong, 2021. "Statistical analysis of family based dispatching rules and preemption," International Journal of Production Economics, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    2. Michele Ciavotta & Carlo Meloni & Marco Pranzo, 2016. "Speeding up a Rollout algorithm for complex parallel machine scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4993-5009, August.
    3. Xiuli Wu & Junjian Peng & Xiao Xiao & Shaomin Wu, 2021. "An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 707-728, March.
    4. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    5. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    6. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    7. P J Kalczynski & J Kamburowski, 2004. "Generalization of Johnson's and Talwar's scheduling rules in two-machine stochastic flow shops," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1358-1362, December.
    8. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    9. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    10. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    11. Hongjun Wei & Jinjiang Yuan & Yuan Gao, 2019. "Transportation and Batching Scheduling for Minimizing Total Weighted Completion Time," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    12. Baykasoglu, Adil & ÖzbakIr, Lale, 2010. "Analyzing the effect of dispatching rules on the scheduling performance through grammar based flexible scheduling system," International Journal of Production Economics, Elsevier, vol. 124(2), pages 369-381, April.
    13. Dirk Briskorn & Konrad Stephan & Nils Boysen, 2022. "Minimizing the makespan on a single machine subject to modular setups," Journal of Scheduling, Springer, vol. 25(1), pages 125-137, February.
    14. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    15. Liao, C. J. & Yu, W. C., 1996. "Sequencing heuristics for dependent setups in a continuous process industry," Omega, Elsevier, vol. 24(6), pages 649-659, December.
    16. Calmels, Dorothea, 2022. "An iterated local search procedure for the job sequencing and tool switching problem with non-identical parallel machines," European Journal of Operational Research, Elsevier, vol. 297(1), pages 66-85.
    17. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    18. De', Rahul & May, Jerrold H, 1998. "Using Operational Planning Horizons for Determining Setup Changes," Omega, Elsevier, vol. 26(5), pages 581-592, October.
    19. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    20. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:18:p:5405-5422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.