IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i10p2897-2912.html
   My bibliography  Save this article

A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines

Author

Listed:
  • Elif Elcin Gunay
  • Ufuk Kula

Abstract

In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and uninstentionally. A major source of unintentional sequence alteration in automobile plants is the paint defects. A post-paint resequencing buffer, located before the final assembly is used to restore the altered sequence. Restoring the altered sequence back to the scheduled sequence requires three distinct operations in this buffer: Changing the positions (i.e. resequencing) of vehicles, inserting spare vehicles in between difficult models and replacing spare vehicles with paint defective vehicles. We develop a two-stage stochastic model to determine the optimal number of spare vehicles from each model-colour type to be placed into the Automated Storage and Retrieval System resequencing buffer that maximises the scheduled sequence achievement ratio (SSAR). The model contributes to the literature by explicitly considering above three distinct operations and random nature of paint defect occurrences. We use sample average approximation algorithm to solve the model. We provide managerial insights on how paint entrance sequence, defect rate and buffer size affect the SSAR. A value of stochastic solution shows that the model significantly outperforms its deterministic counterpart.

Suggested Citation

  • Elif Elcin Gunay & Ufuk Kula, 2017. "A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2897-2912, May.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:10:p:2897-2912
    DOI: 10.1080/00207543.2016.1227101
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1227101
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1227101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    2. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    3. M Gravel & C Gagné & W L Price, 2005. "Review and comparison of three methods for the solution of the car sequencing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1287-1295, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Lehmann & Heinrich Kuhn, 2020. "Modeling and analyzing sequence stability in flexible automotive production systems," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 366-394, June.
    2. Uli Golle & Franz Rothlauf & Nils Boysen, 2015. "Iterative beam search for car sequencing," Annals of Operations Research, Springer, vol. 226(1), pages 239-254, March.
    3. Iwona Paprocka & Damian Krenczyk, 2023. "On Energy Consumption and Productivity in a Mixed-Model Assembly Line Sequencing Problem," Energies, MDPI, vol. 16(20), pages 1-19, October.
    4. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    5. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    6. Boysen, Nils & Fliedner, Malte, 2007. "Comments on "Solving real car sequencing problems with ant colony optimization"," European Journal of Operational Research, Elsevier, vol. 182(1), pages 466-468, October.
    7. Joaquín Bautista & Jordi Pereira & Belarmino Adenso-Díaz, 2008. "A Beam Search approach for the optimization version of the Car Sequencing Problem," Annals of Operations Research, Springer, vol. 159(1), pages 233-244, March.
    8. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    9. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    10. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    11. C Gagné & M Gravel & S Morin & W L Price, 2008. "Impact of the pheromone trail on the performance of ACO algorithms for solving the car-sequencing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1077-1090, August.
    12. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    13. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    14. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    15. Guo, Xiaolong & Dong, Yufeng & Ling, Liuyi, 2016. "Customer perspective on overbooking: The failure of customers to enjoy their reserved services, accidental or intended?," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 65-72.
    16. Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y. & Nossack, Jenny & Pesch, Erwin, 2014. "Minimizing setup costs in a transfer line design problem with sequential operation processing," International Journal of Production Economics, Elsevier, vol. 151(C), pages 186-194.
    17. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    18. Felix Winter & Nysret Musliu, 2022. "A large neighborhood search approach for the paint shop scheduling problem," Journal of Scheduling, Springer, vol. 25(4), pages 453-475, August.
    19. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    20. Parames Chutima & Sathaporn Olarnviwatchai, 2018. "A multi-objective car sequencing problem on two-sided assembly lines," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1617-1636, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:10:p:2897-2912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.