IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i1d10.1007_s10479-022-04860-8.html
   My bibliography  Save this article

Instance space analysis for the car sequencing problem

Author

Listed:
  • Yuan Sun

    (Monash University)

  • Samuel Esler

    (Monash University)

  • Dhananjay Thiruvady

    (Deakin University)

  • Andreas T. Ernst

    (Monash University)

  • Xiaodong Li

    (RMIT University)

  • Kerri Morgan

    (Deakin University)

Abstract

We investigate an important research question for solving the car sequencing problem, that is, which characteristics make an instance hard to solve? To do so, we carry out an instance space analysis for the car sequencing problem, by extracting a vector of problem features to characterize an instance. In order to visualize the instance space, the feature vectors are projected onto a 2-D space using dimensionality reduction techniques. The resulting 2-D visualizations provide new insights into the characteristics of the instances used for testing and how these characteristics influence the behaviours of an optimization algorithm. This analysis guides us in constructing a new set of benchmark instances with a range of instance properties. We demonstrate that these new instances are more diverse than the previous benchmarks, including some instances that are significantly more difficult to solve. We introduce two new algorithms for solving the car sequencing problem and compare them with four existing methods from the literature. Our new algorithms are shown to perform competitively for this problem but no single algorithm can outperform all others over all instances. This observation motivates us to build an algorithm selection model based on machine learning, to identify the niche in the instance space that an algorithm is expected to perform well on. Our analysis helps to understand problem hardness and select an appropriate algorithm for solving a given car sequencing problem instance.

Suggested Citation

  • Yuan Sun & Samuel Esler & Dhananjay Thiruvady & Andreas T. Ernst & Xiaodong Li & Kerri Morgan, 2024. "Instance space analysis for the car sequencing problem," Annals of Operations Research, Springer, vol. 341(1), pages 41-69, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-022-04860-8
    DOI: 10.1007/s10479-022-04860-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04860-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04860-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-022-04860-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.