IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i12p3677-3690.html
   My bibliography  Save this article

Comparative analysis of the performance of a novel U-shaped ‘chasing-overtaking’ production line

Author

Listed:
  • Qin Chen
  • ShiLong Liao
  • ZhongZhen Wu
  • ShuPing Yi

Abstract

Fluctuations in market demands, increased mobility of workers and changing employment practices as well as companies’ increased respect for individual differences of workers have led to the phenomenon that workers with large efficiency differences work together in the same production line in manufacturing companies. In a traditional travelling production line (TrPL), low-efficiency workers can block the work of higher efficiency workers. To increase the production capacity of a travelling line composed of workers with different efficiencies, a chasing-overtaking mechanism was established and used to achieve line production capacity and efficiency improvement. A formula to calculate the production capacity of two workers with different efficiencies was derived and validated. A simulation performed to analyse the differences between the ‘chasing-overtaking’ production line (COPL), TrPL and the classic ‘bucket brigade’ production line (BBPL) with respect to production capacity, working time utilisation and equipment utilisation demonstrated that the COPL provides good production capacity and adaptability to worker differences. Finally, the statistical analysis verified that the COPL has a higher production capacity, average worker working hour utilisation rate and equipment utilisation rate than the BBPL and TrPL.

Suggested Citation

  • Qin Chen & ShiLong Liao & ZhongZhen Wu & ShuPing Yi, 2016. "Comparative analysis of the performance of a novel U-shaped ‘chasing-overtaking’ production line," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3677-3690, June.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:12:p:3677-3690
    DOI: 10.1080/00207543.2015.1125033
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1125033
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1125033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakade, Koichi & Ohno, Katsuhisa, 1999. "An optimal worker allocation problem for a U-shaped production line," International Journal of Production Economics, Elsevier, vol. 60(1), pages 353-358, April.
    2. John J. Bartholdi & Leonid A. Bunimovich & Donald D. Eisenstein, 1999. "Dynamics of Two- and Three-Worker “Bucket Brigade” Production Lines," Operations Research, INFORMS, vol. 47(3), pages 488-491, June.
    3. G. J. Miltenburg & J. Wijngaard, 1994. "The U-line Line Balancing Problem," Management Science, INFORMS, vol. 40(10), pages 1378-1388, October.
    4. Luis Mendes & José Machado, 2015. "Employees’ skills, manufacturing flexibility and performance: a structural equation modelling applied to the automotive industry," International Journal of Production Research, Taylor & Francis Journals, vol. 53(13), pages 4087-4101, July.
    5. Emil Zavadlav & John O. McClain & L. Joseph Thomas, 1996. "Self-Buffering, Self-Balancing, Self-Flushing Production Lines," Management Science, INFORMS, vol. 42(8), pages 1151-1164, August.
    6. Armbruster, Dieter & Gel, Esma S., 2006. "Bucket brigades revisited: Are they always effective?," European Journal of Operational Research, Elsevier, vol. 172(1), pages 213-229, July.
    7. John J. Bartholdi, III & Donald D. Eisenstein, 2005. "Using Bucket Brigades to Migrate from Craft Manufacturing to Assembly Lines," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 121-129, August.
    8. John J. Bartholdi & Donald D. Eisenstein, 1996. "A Production Line that Balances Itself," Operations Research, INFORMS, vol. 44(1), pages 21-34, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhexuan Zhou & Yajie Dou & Jianbin Sun & Jiang Jiang & Yuejin Tan, 2017. "Sustainable Production Line Evaluation Based on Evidential Reasoning," Sustainability, MDPI, vol. 9(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koichi Nakade, 2017. "Effect of worker sequence on cycle time in a U-shaped line with chase mode," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2752-2763, May.
    2. Yun Fong Lim, 2011. "TECHNICAL NOTE---Cellular Bucket Brigades," Operations Research, INFORMS, vol. 59(6), pages 1539-1545, December.
    3. Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
    4. Nakade, Koichi & Ohno, Katsuhisa, 2003. "Separate and carousel type allocations of workers in a U-shaped production line," European Journal of Operational Research, Elsevier, vol. 145(2), pages 403-424, March.
    5. Suresh Chand & Ting Zeng, 2001. "A Comparison of U-Line and Straight-Line Performances Under Stochastic Task Times," Manufacturing & Service Operations Management, INFORMS, vol. 3(2), pages 138-150, January.
    6. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2015. "Quantifying picker blocking in a bucket brigade order picking system," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 862-873.
    7. Yun Fong Lim & Bingnan Lu & Rowan Wang & Wenjia Zhang, 2020. "Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem System," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1431-1447, June.
    8. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    9. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    10. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    11. John O. McClain & Kenneth L. Schultz & L. Joseph Thomas, 2000. "Management of Worksharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 49-67, July.
    12. John J. Bartholdi & Leonid A. Bunimovich & Donald D. Eisenstein, 1999. "Dynamics of Two- and Three-Worker “Bucket Brigade” Production Lines," Operations Research, INFORMS, vol. 47(3), pages 488-491, June.
    13. Sabuncuoglu, Ihsan & Erel, Erdal & Alp, Arda, 2009. "Ant colony optimization for the single model U-type assembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 287-300, August.
    14. Sennott, Linn I. & Van Oyen, Mark P. & Iravani, Seyed M.R., 2006. "Optimal dynamic assignment of a flexible worker on an open production line with specialists," European Journal of Operational Research, Elsevier, vol. 170(2), pages 541-566, April.
    15. Emel Kızılkaya Aydoğan & Yılmaz Delice & Uğur Özcan & Cevriye Gencer & Özkan Bali, 2019. "Balancing stochastic U-lines using particle swarm optimization," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 97-111, January.
    16. John J. Bartholdi & Donald D. Eisenstein & Robert D. Foley, 2001. "Performance of Bucket Brigades When Work Is Stochastic," Operations Research, INFORMS, vol. 49(5), pages 710-719, October.
    17. Li, Dongni & Lyu, Yao & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2024. "Order sequencing for a bucket brigade seru in a mass customization environment," International Journal of Production Economics, Elsevier, vol. 270(C).
    18. Sunder Kekre & Uday S. Rao & Jayashankar M. Swaminathan & Jun Zhang, 2003. "Reconfiguring a Remanufacturing Line at Visteon, Mexico," Interfaces, INFORMS, vol. 33(6), pages 30-43, December.
    19. Sigrún Andradóttir & Hayriye Ayhan, 2005. "Throughput Maximization for Tandem Lines with Two Stations and Flexible Servers," Operations Research, INFORMS, vol. 53(3), pages 516-531, June.
    20. Soondo Hong & Andrew L. Johnson & Brett A. Peters, 2016. "Order batching in a bucket brigade order picking system considering picker blocking," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 425-441, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:12:p:3677-3690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.