IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i6p1539-1545.html
   My bibliography  Save this article

TECHNICAL NOTE---Cellular Bucket Brigades

Author

Listed:
  • Yun Fong Lim

    (Lee Kong Chian School of Business, Singapore Management University, Singapore 178899, Republic of Singapore)

Abstract

Workers in a bucket brigade production system perform unproductive travel when they walk to get more work from their colleagues. We introduce a new design of bucket brigades to reduce unproductive travel. Under the new design, each worker works on one side of an aisle when he proceeds in one direction and works on the other side when he proceeds in the reverse direction. We propose simple rules for workers to share work under the new design and find a sufficient condition for the system to self-balance. Numerical examples suggest that the improvement in throughput by the new design can be as large as 30%. Even with a 20% reduction in labor, the new design can still increase throughput by 7%.

Suggested Citation

  • Yun Fong Lim, 2011. "TECHNICAL NOTE---Cellular Bucket Brigades," Operations Research, INFORMS, vol. 59(6), pages 1539-1545, December.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:6:p:1539-1545
    DOI: 10.1287/opre.1110.0958
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.0958
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.0958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald D. Eisenstein, 2005. "Recovering Cyclic Schedules Using Dynamic Produce-Up-To Policies," Operations Research, INFORMS, vol. 53(4), pages 675-688, August.
    2. Armbruster, Dieter & Gel, Esma S. & Murakami, Junko, 2007. "Bucket brigades with worker learning," European Journal of Operational Research, Elsevier, vol. 176(1), pages 264-274, January.
    3. John J. Bartholdi & Leonid A. Bunimovich & Donald D. Eisenstein, 1999. "Dynamics of Two- and Three-Worker “Bucket Brigade” Production Lines," Operations Research, INFORMS, vol. 47(3), pages 488-491, June.
    4. Armbruster, Dieter & Gel, Esma S., 2006. "Bucket brigades revisited: Are they always effective?," European Journal of Operational Research, Elsevier, vol. 172(1), pages 213-229, July.
    5. Bartholdi III, John J. & Eisenstein, Donald D. & Lim, Yun Fong, 2006. "Bucket brigades on in-tree assembly networks," European Journal of Operational Research, Elsevier, vol. 168(3), pages 870-879, February.
    6. John J. Bartholdi & Donald D. Eisenstein & Yun Fong Lim, 2009. "Deterministic chaos in a model of discrete manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 293-299, June.
    7. John J. Bartholdi, III & Donald D. Eisenstein, 2005. "Using Bucket Brigades to Migrate from Craft Manufacturing to Assembly Lines," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 121-129, August.
    8. John J. Bartholdi & Donald D. Eisenstein, 1996. "A Production Line that Balances Itself," Operations Research, INFORMS, vol. 44(1), pages 21-34, February.
    9. John J. Bartholdi & Donald D. Eisenstein & Robert D. Foley, 2001. "Performance of Bucket Brigades When Work Is Stochastic," Operations Research, INFORMS, vol. 49(5), pages 710-719, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dongni & Lyu, Yao & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2024. "Order sequencing for a bucket brigade seru in a mass customization environment," International Journal of Production Economics, Elsevier, vol. 270(C).
    2. Soondo Hong, 2018. "The effects of picker-oriented operational factors on hand-off delay in a bucket brigade order picking system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 781-808, July.
    3. Yun Fong Lim & Bingnan Lu & Rowan Wang & Wenjia Zhang, 2020. "Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem System," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1431-1447, June.
    4. Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
    5. Zheng Wang & Jiuh‐Biing Sheu & Chung‐Piaw Teo & Guiqin Xue, 2022. "Robot Scheduling for Mobile‐Rack Warehouses: Human–Robot Coordinated Order Picking Systems," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 98-116, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2015. "Quantifying picker blocking in a bucket brigade order picking system," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 862-873.
    2. Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
    3. Soondo Hong, 2018. "The effects of picker-oriented operational factors on hand-off delay in a bucket brigade order picking system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 781-808, July.
    4. Yun Fong Lim & Bingnan Lu & Rowan Wang & Wenjia Zhang, 2020. "Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem System," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1431-1447, June.
    5. Qin Chen & ShiLong Liao & ZhongZhen Wu & ShuPing Yi, 2016. "Comparative analysis of the performance of a novel U-shaped ‘chasing-overtaking’ production line," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3677-3690, June.
    6. Koichi Nakade, 2017. "Effect of worker sequence on cycle time in a U-shaped line with chase mode," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2752-2763, May.
    7. Bentefouet, Frank & Nembhard, David A., 2013. "Optimal flow-line conditions with worker variability," International Journal of Production Economics, Elsevier, vol. 141(2), pages 675-684.
    8. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    9. Li, Dongni & Lyu, Yao & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2024. "Order sequencing for a bucket brigade seru in a mass customization environment," International Journal of Production Economics, Elsevier, vol. 270(C).
    10. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    11. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    12. Armbruster, Dieter & Gel, Esma S., 2006. "Bucket brigades revisited: Are they always effective?," European Journal of Operational Research, Elsevier, vol. 172(1), pages 213-229, July.
    13. Soondo Hong & Andrew L. Johnson & Brett A. Peters, 2016. "Order batching in a bucket brigade order picking system considering picker blocking," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 425-441, September.
    14. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    15. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    16. Armbruster, Dieter & Gel, Esma S. & Murakami, Junko, 2007. "Bucket brigades with worker learning," European Journal of Operational Research, Elsevier, vol. 176(1), pages 264-274, January.
    17. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    18. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
    19. S.M.R. Iravani & J.A. Buzacott & M.J.M. Posner, 2005. "A robust policy for serial agile production systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 58-73, February.
    20. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:6:p:1539-1545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.