IDEAS home Printed from https://ideas.repec.org/a/taf/tjomxx/v13y2017i2p787-798.html
   My bibliography  Save this article

Historic flood events in NE Romania (post-1990)

Author

Listed:
  • Gheorghe Romanescu
  • Catalin I. Cimpianu
  • Alin Mihu-Pintilie
  • Cristian C. Stoleriu

Abstract

Using open-source satellite imagery like Landsat TM, ETM+ and Sentinel 2 can lead to accurate cartographic products. We mapped flood events from Siret and Prut river basins in the last 30 years based on the availability of Landsat data archive. In this area were recorded historical values in flow rates for the entire Romanian territory: 4650 m³/s on the Siret River in 2005 – the maximum value ever recorded for Romania; 4240 m³/s on the Prut in 2008 – second maximum value recorded for Romania. The most powerful floods that took place in Romania in the last years were in 1970, 1975, 1991, 2005, 2008, 2010 and 2011. In this study four years are distinguished by particularly characteristics: 1991, 2005, 2008 and 2010. Developing geo-hydrological hazard maps and adequate analysis at an appropriate scale and as quickly as possible is extremely important from an economic and social point of view.

Suggested Citation

  • Gheorghe Romanescu & Catalin I. Cimpianu & Alin Mihu-Pintilie & Cristian C. Stoleriu, 2017. "Historic flood events in NE Romania (post-1990)," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 787-798, November.
  • Handle: RePEc:taf:tjomxx:v:13:y:2017:i:2:p:787-798
    DOI: 10.1080/17445647.2017.1383944
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17445647.2017.1383944
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17445647.2017.1383944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gheorghe Romanescu & Cristian Stoleriu, 2013. "Causes and effects of the catastrophic flooding on the Siret River (Romania) in July–August 2008," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1351-1367, December.
    2. Fleur Visser, 2014. "Rapid mapping of urban development from historic Ordnance Survey maps: An application for pluvial flood risk in Worcester," Journal of Maps, Taylor & Francis Journals, vol. 10(2), pages 276-288, April.
    3. Joy Sanyal & X. Lu, 2004. "Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 283-301, October.
    4. Paolo Magliulo & Angelo Cusano, 2016. "Geomorphology of the Lower Calore River alluvial plain (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 12(5), pages 1119-1127, October.
    5. Gianina Cojoc & Gheorghe Romanescu & Alina Tirnovan, 2015. "Exceptional floods on a developed river: case study for the Bistrita River from the Eastern Carpathians (Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1421-1451, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andra-Cosmina Albulescu, 2023. "Exploring the links between flood events and the COVID-19 infection cases in Romania in the new multi-hazard-prone era," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1611-1631, June.
    2. Alena V. Kadetova & Yan B. Radziminovich, 2020. "Historical floods within the Selenga river basin: chronology and extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 579-598, August.
    3. Roman Corobov & Antoaneta Ene & Ilya Trombitsky & Elena Zubcov, 2020. "The Prut River under Climate Change and Hydropower Impact," Sustainability, MDPI, vol. 13(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    2. Nizamud Din Essa & Muneeb Aamir, 2019. "Analysis of Flood Damage Assessment through WorldView-2, Quick Bird and Multispectral Satellite Imagery in Southern Punjab, Pakistan," International Journal of Innovations in Science & Technology, 50sea, vol. 1(3), pages 120-139, July.
    3. Hany F. Abd-Elhamid & Ismail Fathy & Martina Zeleňáková, 2018. "Flood prediction and mitigation in coastal tourism areas, a case study: Hurghada, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 559-576, September.
    4. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    5. Anoop Kumar Mishra & Mohammad Suhail Meer & Vanganuru Nagaraju, 2019. "Satellite-based monitoring of recent heavy flooding over north-eastern states of India in July 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1407-1412, July.
    6. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    7. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Cianflone & Diego Di Martire & Fabio Ietto & Alessandro Novellino & Concetta Rispoli & Claudia Zito & Domenico Calcaterra, 2023. "Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1029-1051, March.
    8. Kashfia Nowrin Choudhury & Helmut Yabar & Takeshi Mizunoya, 2022. "GIS and remote sensing-based spatiotemporal analysis of cumulative flood risk over Bangladesh’s national highways," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 335-364, February.
    9. Meilutytė-Lukauskienė D. & Akstinas V. & Vaitulionytė M. & Tomkevičienė A., 2022. "Behaviour of the 2010 flood in Lithuania: management and socio-economic risks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-29, March.
    10. Rei Itsukushima & Kazuaki Ohtsuki & Tatsuro Sato, 2019. "Influence of Microtopography and Alluvial Lowland Characteristics on Location and Development of Residential Areas in the Kuji River Basin of Japan," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    11. Mahnaz Gumrukcuoglu & Douglas Goodin & Charles Martin, 2010. "Landuse change in upper Kansas river floodplain: following the 1993 flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 467-479, November.
    12. Seda Ertan & Rahmi Nurhan Çelik, 2021. "The Assessment of Urbanization Effect and Sustainable Drainage Solutions on Flood Hazard by GIS," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    13. Kumar Gaurav & R. Sinha & P. Panda, 2011. "The Indus flood of 2010 in Pakistan: a perspective analysis using remote sensing data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1815-1826, December.
    14. Enrique Barajas & Sara Álvarez & Elena Fernández & Sergio Vélez & José Antonio Rubio & Hugo Martín, 2020. "Sentinel-2 Satellite Imagery for Agronomic and Quality Variability Assessment of Pistachio ( Pistacia vera L.)," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    15. Yunlan Zhang & Xiaomin Jiang & Feng Zhang, 2024. "Urban Flood Resilience Assessment of Zhengzhou Considering Social Equity and Human Awareness," Land, MDPI, vol. 13(1), pages 1-23, January.
    16. Elena Sava & Laura Clemente-Harding & Guido Cervone, 2017. "Supervised classification of civil air patrol (CAP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 535-556, March.
    17. Joy Sanyal & Patrice Carbonneau & Alexander Densmore, 2013. "Hydraulic routing of extreme floods in a large ungauged river and the estimation of associated uncertainties: a case study of the Damodar River, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1153-1177, March.
    18. Zhicheng Wang & Zhiqiang Gao, 2022. "Dynamic monitoring of flood disaster based on remote sensing data cube," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3123-3138, December.
    19. Md. Shahinoor Rahman & Liping Di, 2017. "The state of the art of spaceborne remote sensing in flood management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1223-1248, January.
    20. Boni Su & Hong Huang & Yuntao Li, 2016. "Integrated simulation method for waterlogging and traffic congestion under urban rainstorms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 23-40, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjomxx:v:13:y:2017:i:2:p:787-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjom20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.