IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i3d10.1007_s11069-022-05508-3.html
   My bibliography  Save this article

Dynamic monitoring of flood disaster based on remote sensing data cube

Author

Listed:
  • Zhicheng Wang

    (Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhiqiang Gao

    (Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

High-frequency dynamic monitoring of flood disaster using remote sensing technology is crucial for accurate decision-making of disaster prevention and relief. However, the current trade-off between spatial and temporal resolution of remote sensing sensors limits their application in high-frequency dynamic monitoring of flood disaster. To deal with this challenge, in this study, we presented an approach to conduct high-frequency dynamic monitoring of flood disaster based on remote sensing data cube with high spatial and temporal resolution. The presented approach included two steps: a, removing the cloudy areas in original MODIS data to construct the cloud-free MODIS data cube by using the information provided by GPM rainfall data; b, fusing the cloud-free MODIS data cube and Landsat-8 data by using the spatiotemporal data fusion algorithm to construct the high spatiotemporal resolution (Landsat-like) data cube. The approach was tested by conducting high-frequency dynamic monitoring of flood disaster occurred in Henan Province, PR China. Our study had three main results: (1) the presented cloud removal algorithm in the first step was able to retain flood information and performed well in removing clouds during consecutive rainy days. The differences between cloud-free MODIS data cube and original MODIS data were small and the cloud-free MODIS data cube could be used for constructing high spatiotemporal resolution data cube. (2) Our presented approach could be used to conduct high-frequency dynamic monitoring of flood disaster. (3) Testing results showed that there were two floods occurred in the study area from July 17, 2021, to October 16, 2021; the first flood occurred from July 17, 2021, to September 15, 2021, with maximum affected area of 668.36 km2; the second flood occurred from September 18, 2021, to October 16, 2021, with maximum affected area of 303.88 km2. Our study provides a general approach for high-frequency monitoring of flood disaster.

Suggested Citation

  • Zhicheng Wang & Zhiqiang Gao, 2022. "Dynamic monitoring of flood disaster based on remote sensing data cube," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3123-3138, December.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05508-3
    DOI: 10.1007/s11069-022-05508-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05508-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05508-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joy Sanyal & X. Lu, 2004. "Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 283-301, October.
    2. Ali Mehrabi, 2021. "Monitoring the Iran Pol-e-Dokhtar flood extent and detecting its induced ground displacement using sentinel 1 imagery techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2603-2617, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    2. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    3. Mahnaz Gumrukcuoglu & Douglas Goodin & Charles Martin, 2010. "Landuse change in upper Kansas river floodplain: following the 1993 flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 467-479, November.
    4. Yunlan Zhang & Xiaomin Jiang & Feng Zhang, 2024. "Urban Flood Resilience Assessment of Zhengzhou Considering Social Equity and Human Awareness," Land, MDPI, vol. 13(1), pages 1-22, January.
    5. Joy Sanyal & Patrice Carbonneau & Alexander Densmore, 2013. "Hydraulic routing of extreme floods in a large ungauged river and the estimation of associated uncertainties: a case study of the Damodar River, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1153-1177, March.
    6. Boni Su & Hong Huang & Yuntao Li, 2016. "Integrated simulation method for waterlogging and traffic congestion under urban rainstorms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 23-40, March.
    7. Sushila Rijal & Bhagawat Rimal & Sean Sloan, 2018. "Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal," Land, MDPI, vol. 7(2), pages 1-13, May.
    8. Rajesh Kumar & Prasenjit Acharya, 2016. "Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 437-464, October.
    9. Gaurav Talukdar & Janaki Ballav Swain & Kanhu Charan Patra, 2021. "Flood inundation mapping and hazard assessment of Baitarani River basin using hydrologic and hydraulic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 389-403, October.
    10. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    11. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    12. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    13. Y. Yang & Patrick Ray & Casey Brown & Abedalrazq Khalil & Winston Yu, 2015. "Estimation of flood damage functions for river basin planning: a case study in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2773-2791, February.
    14. Ahmad Rajabi & Saeid Shabanlou & Fariborz Yosefvand & Afshin Kiani, 2021. "Exploring the sample size and replications scenarios effect on spatial prediction of flood, using MARS and MaxEnt methods case study: saliantape catchment, Golestan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 871-901, October.
    15. Boni Su & Hong Huang & Yuntao Li, 2016. "Integrated simulation method for waterlogging and traffic congestion under urban rainstorms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 23-40, March.
    16. Susmita Ghosh & Md. Mofizul Hoque & Aznarul Islam & Suman Deb Barman & Sadik Mahammad & Abdur Rahman & Nishith Kumar Maji, 2023. "Characterizing floods and reviewing flood management strategies for better community resilience in a tropical river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1799-1832, January.
    17. Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    18. Zaw Latt & Hartmut Wittenberg, 2014. "Improving Flood Forecasting in a Developing Country: A Comparative Study of Stepwise Multiple Linear Regression and Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2109-2128, June.
    19. Samuele, De Petris & Federica, Ghilardi & Filippo, Sarvia & Enrico, Borgogno-Mondino, 2022. "A simplified method for water depth mapping over crops during flood based on Copernicus and DTM open data," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Rodeano Roslee & Felix Tongkul & Norbert Simon & Mohd. Norazman Norhisham, 2017. "Flood Potential Analysis (FPAn) using Geo-Spatial Data in Penampang area, Sabah," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 1(1), pages 1-6, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05508-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.