IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2293-d502608.html
   My bibliography  Save this article

The Assessment of Urbanization Effect and Sustainable Drainage Solutions on Flood Hazard by GIS

Author

Listed:
  • Seda Ertan

    (Department of Geographical Information Technology, Institute of Informatics, Istanbul Technical University, Istanbul 34649, Turkey)

  • Rahmi Nurhan Çelik

    (Department of Geomatic Engineering, Civil Engineering Faculty, Istanbul Technical University, Istanbul 34649, Turkey)

Abstract

Rapid and uncontrolled changes in land use patterns due to urbanization negatively affect urban rainfall-runoff processes and flood hazard. In this study, a method that included different sustainable drainage solutions, such as green infrastructure (GI) usage for flood hazard mitigation with various scenarios on a geographic information system (GIS) platform within a 1653 ha catchment of the Kağıthane Stream in İstanbul, Turkey is presented. Developed scenarios are as follows: scenario one (SN1) is the current situation; scenario two (SN2) used green roof application for buildings and a permeable surface for roads; scenario three (SN3) used only green roof application for buildings; scenario four (SN4) used a rainwater barrel for collecting roof water, a swale canal for collecting road water, and added additional structures to open areas to observe urbanization; scenario five (SN5) considered multiple GI implementations; and scenario six (SN6) considered full urbanization. The results indicate that greener infrastructure implementation provides benefits in reducing both the runoff coefficient and the peak flowrate, and the flood inundation area and number of structures affected by flood risk were decreased. The integrated evaluation system, which consisted of the geographic information system and the assessment of the 1D HEC-RAS hydrologic model, was applied to evaluate the GI usage and flood mitigation.

Suggested Citation

  • Seda Ertan & Rahmi Nurhan Çelik, 2021. "The Assessment of Urbanization Effect and Sustainable Drainage Solutions on Flood Hazard by GIS," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2293-:d:502608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Yoonjeong & Brody, Samuel D., 2018. "Examining the impact of land use on flood losses in Seoul, Korea," Land Use Policy, Elsevier, vol. 70(C), pages 500-509.
    2. Liu, Wen & Chen, Weiping & Peng, Chi, 2014. "Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study," Ecological Modelling, Elsevier, vol. 291(C), pages 6-14.
    3. Joy Sanyal & X. Lu, 2004. "Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 283-301, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beibei Liu & Chaowei Xu & Jiashuai Yang & Sen Lin & Xi Wang, 2022. "Effect of Land Use and Drainage System Changes on Urban Flood Spatial Distribution in Handan City: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    2. Shengda Song & Jialing Che & Xiaohan Yuan, 2022. "Disaster Prevention and Mitigation Index Assessment of Green Buildings Based on the Fuzzy Analytic Hierarchy Process," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    3. Helena M. Ramos & Mohsen Besharat, 2021. "Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    4. Francesco Faccini & Fabio Luino & Guido Paliaga & Anna Roccati & Laura Turconi, 2021. "Flash Flood Events along the West Mediterranean Coasts: Inundations of Urbanized Areas Conditioned by Anthropic Impacts," Land, MDPI, vol. 10(6), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    2. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    3. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    4. Xinyu Wu & Rong Tang & Yuntao Wang, 2024. "Evaluating the cost–benefit of LID strategies for urban surface water flooding based on risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10345-10364, September.
    5. Nizamud Din Essa & Muneeb Aamir, 2019. "Analysis of Flood Damage Assessment through WorldView-2, Quick Bird and Multispectral Satellite Imagery in Southern Punjab, Pakistan," International Journal of Innovations in Science & Technology, 50sea, vol. 1(3), pages 120-139, July.
    6. Hyomin Kim & Dong-Kun Lee & Sunyong Sung, 2016. "Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability," Sustainability, MDPI, vol. 8(2), pages 1-17, January.
    7. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    8. Anoop Kumar Mishra & Mohammad Suhail Meer & Vanganuru Nagaraju, 2019. "Satellite-based monitoring of recent heavy flooding over north-eastern states of India in July 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1407-1412, July.
    9. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    10. Antonios Kolimenakis & Alexandra D. Solomou & Nikolaos Proutsos & Evangelia V. Avramidou & Evangelia Korakaki & Georgios Karetsos & Georgios Maroulis & Eleftherios Papagiannis & Konstantinia Tsagkari, 2021. "The Socioeconomic Welfare of Urban Green Areas and Parks; A Literature Review of Available Evidence," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    11. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    12. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    13. Tii N. Nchofoung & Simplice A. Asongu & Arsène A. Njamen Kengdo & Elvis D. Achuo, 2022. "Linear and non‐linear effects of infrastructures on inclusive human development in Africa," African Development Review, African Development Bank, vol. 34(1), pages 81-96, March.
    14. Liu, Wen & Chen, Weiping & Peng, Chi, 2015. "Influences of setting sizes and combination of green infrastructures on community’s stormwater runoff reduction," Ecological Modelling, Elsevier, vol. 318(C), pages 236-244.
    15. Cheol Hee Son & Yong Un Ban, 2022. "Flood vulnerability characteristics considering environmental justice and urban disaster prevention plan in Seoul, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3185-3204, December.
    16. Andrea I. Frank & Andrew Flynn & Nick Hacking & Christopher Silver, 2021. "More Than Open Space! The Case for Green Infrastructure Teaching in Planning Curricula," Urban Planning, Cogitatio Press, vol. 6(1), pages 63-74.
    17. Ianoş, Ioan & Ionică, Cristian & Sîrodoev, Igor & Sorensen, Anthony & Bureţa, Emanuel & Merciu, George & Paraschiv, Mirela & Tălângă, Cristian, 2019. "Inadequate risk management and excessive response to flood disaster create unexpected land use changes and potential local conflicts," Land Use Policy, Elsevier, vol. 88(C).
    18. Byungsun Yang & Dongkun Lee, 2021. "Urban Green Space Arrangement for an Optimal Landscape Planning Strategy for Runoff Reduction," Land, MDPI, vol. 10(9), pages 1-12, August.
    19. Johnson, Daniel & Geisendorf, Sylvie, 2019. "Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses," Ecological Economics, Elsevier, vol. 158(C), pages 194-205.
    20. Kashfia Nowrin Choudhury & Helmut Yabar & Takeshi Mizunoya, 2022. "GIS and remote sensing-based spatiotemporal analysis of cumulative flood risk over Bangladesh’s national highways," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 335-364, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2293-:d:502608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.