IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v17y2017i3p330-345.html
   My bibliography  Save this article

Using the social cost of carbon to value earth observing systems

Author

Listed:
  • Roger Cooke
  • Alexander Golub
  • Bruce A. Wielicki
  • David F. Young
  • Martin G. Mlynczak
  • Rosemary R. Baize

Abstract

The goal of this study is to show how to quantify the benefits of accelerated learning about key parameters of the climatic system and use this knowledge to improve decision-making on climate policy. The US social cost of carbon (SCC) methodology is used in innovative ways to value new Earth observing systems (EOSs). The study departs from the strict US SCC methodology, and from previous work, in that net benefits are used instead of only damages to calculate the value of information of the enhanced systems. In other respects the US SCC methodology is followed closely. We compute the surfeit expected net benefits of learning the actionable information earlier, with the enhanced system, versus learning later with existing systems. The enhanced systems are designed to give reliable information about climate sensitivity on accelerated timescales relative to existing systems; therefore, the decision context stipulates that a global reduced emissions path would be deployed upon receiving suitable information on the rate of temperature rise with a suitable level of confidence. By placing the enhanced observing system in a decision context, the SCC enables valuing this system as a real option.Policy relevanceUncertainty in key parameters of the climatic system is often cited as a barrier for near-term reductions of carbon emissions. It is a truism among risk managers that uncertainty costs money, and its reduction has economic value. Advancing policy making under uncertainty requires valuing the reduction in uncertainty. Using CLARREO, a new proposed EOS,as an example, this article applies value of information/real option theory to value the reduction of uncertainty in the decadal rate of temperature rise. The US interagency social cost of carbon directive provides the decision context for the valuations. It is shown that the real option value of the uncertainty reduction, relative to existing observing systems, is a very large multiple of the new system's cost.

Suggested Citation

  • Roger Cooke & Alexander Golub & Bruce A. Wielicki & David F. Young & Martin G. Mlynczak & Rosemary R. Baize, 2017. "Using the social cost of carbon to value earth observing systems," Climate Policy, Taylor & Francis Journals, vol. 17(3), pages 330-345, April.
  • Handle: RePEc:taf:tcpoxx:v:17:y:2017:i:3:p:330-345
    DOI: 10.1080/14693062.2015.1110109
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2015.1110109
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2015.1110109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arrow, K. & Cropper, M. & Gollier, C. & Groom, B. & Heal, G. & Newell, R. & Nordhaus, W. & Pindyck, R. & Pizer, W. & Portney, P. & Sterner, T. & Tol, R. S. J. & Weitzman, Martin L., 2013. "Determining Benefits and Costs for Future Generations," Scholarly Articles 12841963, Harvard University Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2017. "The Vine Philosopher: An interview with Roger Cooke," Dependence Modeling, De Gruyter, vol. 5(1), pages 256-267, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    2. Stern, Nicholas, 2018. "Public economics as if time matters: Climate change and the dynamics of policy," Journal of Public Economics, Elsevier, vol. 162(C), pages 4-17.
    3. Freeman, Mark C. & Wagner, Gernot & Zeckhauser, Richard J., 2015. "Climate Sensitivity Uncertainty: When Is Good News Bad?," Working Paper Series rwp15-002, Harvard University, John F. Kennedy School of Government.
    4. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    5. Koundouri, Phoebe & Roseta-Palma, Catarina & Englezos, Nikolaos, 2017. "Out of Sight, Not Out of Mind: Developments in Economic Models of Groundwater Management," International Review of Environmental and Resource Economics, now publishers, vol. 11(1), pages 55-96, October.
    6. Gollier, Christian, 2016. "Gamma discounters are short-termist," Journal of Public Economics, Elsevier, vol. 142(C), pages 83-90.
    7. Hänsel, Martin C. & Quaas, Martin F., 2018. "Intertemporal Distribution, Sufficiency, and the Social Cost of Carbon," Ecological Economics, Elsevier, vol. 146(C), pages 520-535.
    8. J. Doyne Farmer & John Geanakoplos & Matteo G. Richiardi & Miquel Montero & Josep Perelló & Jaume Masoliver, 2024. "Discounting the Distant Future: What Do Historical Bond Prices Imply about the Long-Term Discount Rate?," Mathematics, MDPI, vol. 12(5), pages 1-25, February.
    9. Maya Eden, 2023. "The Cross‐Sectional Implications of the Social Discount Rate," Econometrica, Econometric Society, vol. 91(6), pages 2065-2088, November.
    10. Luo, Lanlan & Zou, Ziran & Chen, Shou, 2021. "Discounting for public-private partnership projects in China," Economic Modelling, Elsevier, vol. 98(C), pages 218-226.
    11. García, Jorge H. & Torvanger, Asbjørn, 2019. "Carbon leakage from geological storage sites: Implications for carbon trading," Energy Policy, Elsevier, vol. 127(C), pages 320-329.
    12. Moritz A. Drupp & Martin C. Hänsel, 2021. "Relative Prices and Climate Policy: How the Scarcity of Nonmarket Goods Drives Policy Evaluation," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 168-201, February.
    13. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.
    14. Freeman, Mark C. & Groom, Ben & Panopoulou, Ekaterini & Pantelidis, Theologos, 2015. "Declining discount rates and the Fisher Effect: Inflated past, discounted future?," Journal of Environmental Economics and Management, Elsevier, vol. 73(C), pages 32-49.
    15. Stern, Nicholas, 2014. "Ethics, equity and the economics of climate change paper 2: economics and politics," LSE Research Online Documents on Economics 62704, London School of Economics and Political Science, LSE Library.
    16. Hurford, A.P. & Harou, J.J. & Bonzanigo, L. & Ray, P.A. & Karki, P. & Bharati, L. & Chinnasamy, P., 2020. "Efficient and robust hydropower system design under uncertainty - A demonstration in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Christensen, Peter & Gillingham, Kenneth & Nordhaus, William, 2016. "Uncertainty in Forecasts of Long-Run Productivity Growth," Conference papers 332787, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Kollenberg, Sascha & Taschini, Luca, 2016. "Emissions trading systems with cap adjustments," Journal of Environmental Economics and Management, Elsevier, vol. 80(C), pages 20-36.
    19. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    20. Claxton, Karl & Asaria, Miqdad & Chansa, Collins & Jamison, Julian & Lomas, James & Ochalek, Jessica & Paulden, Mike, 2019. "Accounting for timing when assessing health-related policies," LSE Research Online Documents on Economics 100038, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:17:y:2017:i:3:p:330-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.