IDEAS home Printed from https://ideas.repec.org/a/taf/rjusxx/v22y2018i1p17-37.html
   My bibliography  Save this article

Interactions between the built and socio-economic environment and driver demographics: spatial econometric models of car crashes in the Columbus Metropolitan Area

Author

Listed:
  • Dongkwan Lee
  • Jean-Michel Guldmann
  • Burkhard von Rabenau

Abstract

This research analyzes car crashes resulting from the interactions between (1) the characteristics of the built and socio-economic environment where the crashes take place and (2) the gender and age of the driver at fault. Crashes are classified in terms of seriousness (fatalities/injuries, property damages only) and driver demographics. Data are drawn for the Central Ohio Region over 2006–2011 from the multiple files of the crash database of the Ohio Department of Public Safety. These data are aggregated over Traffic Analysis Zones (TAZ). Additional data include socio-economic, land-use, public transit, road network, and other locational/physical factors, also specified at the TAZ level. Regression analysis is used to explain the numbers of crashes in each of 12 groups. Three age groups are considered: young (15–24), adult (25–64), and older (65+). Spatial autocorrelation effects are tested and corrected by estimating spatial econometric models. The implications of the results for transportation safety policy are discussed.

Suggested Citation

  • Dongkwan Lee & Jean-Michel Guldmann & Burkhard von Rabenau, 2018. "Interactions between the built and socio-economic environment and driver demographics: spatial econometric models of car crashes in the Columbus Metropolitan Area," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(1), pages 17-37, January.
  • Handle: RePEc:taf:rjusxx:v:22:y:2018:i:1:p:17-37
    DOI: 10.1080/12265934.2017.1369452
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/12265934.2017.1369452
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/12265934.2017.1369452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebert Kuhlmann, A.K. & Brett, J. & Thomas, D. & Sain, S.R., 2009. "Environmental characteristics associated with pedestrian-motor vehicle collisions in Denver, Colorado," American Journal of Public Health, American Public Health Association, vol. 99(9), pages 1632-1637.
    2. Daniel J. Graham & Stephen Glaister, 2003. "Spatial Variation in Road Pedestrian Casualties: The Role of Urban Scale, Density and Land-use Mix," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1591-1607, July.
    3. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunho Chang & Dongjoo Park, 2020. "Potentialities of Vehicle Trajectory Big Data for Monitoring Potentially Fatigued Drivers and Explaining Vehicle Crashes on Motorway Sections," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    2. Tibor Sipos & Anteneh Afework Mekonnen & Zsombor Szabó, 2021. "Spatial Econometric Analysis of Road Traffic Crashes," Sustainability, MDPI, vol. 13(5), pages 1-16, February.
    3. Dongkwan Lee & Jean-Michel Guldmann & Choongik Choi, 2019. "Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    4. Dongkwan Lee & Jean-Michel Guldmann & Burkhard von Rabenau, 2023. "Impact of Driver’s Age and Gender, Built Environment, and Road Conditions on Crash Severity: A Logit Modeling Approach," IJERPH, MDPI, vol. 20(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Khondoker Billah & Qasim Adegbite & Hatim O. Sharif & Samer Dessouky & Lauren Simcic, 2021. "Analysis of Intersection Traffic Safety in the City of San Antonio, 2013–2017," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    4. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    5. Bae, Bumjoon & Seo, Changbeom, 2022. "Do public-private partnerships help improve road safety? Finding empirical evidence using panel data models," Transport Policy, Elsevier, vol. 126(C), pages 336-342.
    6. Svetlana BAČKALIĆ & Dragan JOVANOVIĆ & Todor BAČKALIĆ & Boško MATOVIĆ & Miloš PLJAKIĆ, 2019. "The Application Of Reliability Reallocation Model In Traffic Safety Analysis On Rural Roads," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(1), pages 115-125, April.
    7. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    8. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    10. Renfei Wu & Xunjia Zheng & Yongneng Xu & Wei Wu & Guopeng Li & Qing Xu & Zhuming Nie, 2019. "Modified Driving Safety Field Based on Trajectory Prediction Model for Pedestrian–Vehicle Collision," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    11. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    12. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    13. Dereli, Mehmet Ali & Erdogan, Saffet, 2017. "A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 106-117.
    14. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    15. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    16. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    17. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    18. Petr Halámek & Radka Matuszková & Michal Radimský, 2021. "Modernisation of Regional Roads Evaluated Using Ex-Post CBA," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    19. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    20. Darren Shannon & Grigorios Fountas, 2022. "Amending the Heston Stochastic Volatility Model to Forecast Local Motor Vehicle Crash Rates: A Case Study of Washington, D.C," Papers 2203.01729, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjusxx:v:22:y:2018:i:1:p:17-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjus20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.