IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i6p619-636.html
   My bibliography  Save this article

Asset allocation when guarding against catastrophic losses: a comparison between the structure variable and joint probability methods

Author

Listed:
  • Brendan Bradley
  • Murad Taqqu

Abstract

We apply a bivariate approach to the asset allocation problem for investors seeking to minimize the probability of large losses. It involves modelling the tails of joint distributions using techniques motivated by extreme value theory. We compare results with a corresponding univariate approach using simulated and financial data. Through an examination of a simulated and real financial data set we show that the estimated risks using the bivariate and univariate approaches are in close agreement for a wide range of losses and allocations. This is important since the bivariate approach is significantly more computationally expensive. We therefore suggest that the univariate approach be used for the typical level of loss that an investor may want to guard against. This univariate approach is effective even if there are more than two assets. The software written in support of this work is available on demand and we describe its use in the appendix.

Suggested Citation

  • Brendan Bradley & Murad Taqqu, 2004. "Asset allocation when guarding against catastrophic losses: a comparison between the structure variable and joint probability methods," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 619-636.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:619-636
    DOI: 10.1080/14697680400008635
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680400008635
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680400008635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jansen, Dennis W. & Koedijk, Kees G. & de Vries, Casper G., 2000. "Portfolio selection with limited downside risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 247-269, November.
    2. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    3. Younes Bensalah, 2002. "Asset Allocation Using Extreme Value Theory," Staff Working Papers 02-2, Bank of Canada.
    4. Stuart G. Coles & Jonathan A. Tawn, 1994. "Statistical Methods for Multivariate Extremes: An Application to Structural Design," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 1-31, March.
    5. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    6. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Dias, Alexandra, 2014. "Semiparametric estimation of multi-asset portfolio tail risk," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 398-408.
    3. Mahfuzul Haque & Oscar Varela, 2010. "US-Thailand Bilateral Safety-first Portfolio Optimisation around the 1997 Asian Financial Crisis," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(2), pages 171-197, August.
    4. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    5. Cotter, John, 2004. "Modelling extreme financial returns of global equity markets," MPRA Paper 3532, University Library of Munich, Germany.
    6. Xiangying Meng & Xianhua Wei, 2018. "Systematic Correlation is Priced as Risk Factor," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-2.
    7. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    8. González-Sánchez, Mariano & Nave Pineda, Juan M., 2023. "Where is the distribution tail threshold? A tale on tail and copulas in financial risk measurement," International Review of Financial Analysis, Elsevier, vol. 86(C).
    9. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    10. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    11. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    12. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    13. Bali, Turan G. & Neftci, Salih N., 2003. "Disturbing extremal behavior of spot rate dynamics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 455-477, September.
    14. Maarten van Oordt & Chen Zhou, 2011. "Systematic risk under extremely adverse market condition," DNB Working Papers 281, Netherlands Central Bank, Research Department.
    15. Kole, H.J.W.G. & Koedijk, C.G. & Verbeek, M.J.C.M., 2003. "Stress Testing with Student's t Dependence," ERIM Report Series Research in Management ERS-2003-056-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Cotter, John & Longin, Francois, 2006. "Implied correlation from VaR," MPRA Paper 3506, University Library of Munich, Germany.
    17. Chun-Pin Hsu & Chin-Wen Huang & Wan-Jiun Chiou, 2012. "Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets," Review of Quantitative Finance and Accounting, Springer, vol. 39(4), pages 447-468, November.
    18. Huang, Wei & Liu, Qianqiu & Ghon Rhee, S. & Wu, Feng, 2012. "Extreme downside risk and expected stock returns," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1492-1502.
    19. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    20. Robert A. Jones & Christophe Pérignon, 2013. "Derivatives Clearing, Default Risk, and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 373-400, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:619-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.