IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i4p777-797.html
   My bibliography  Save this article

Rating frailty, Bayesian updates, and portfolio credit risk analysis

Author

Listed:
  • Shang Bu
  • Nan Guo
  • Lingfei Li

Abstract

This paper studies how to utilize individual ratings and credit performance for portfolio credit risk analysis and surveillance. We model the default intensity of firms using a proportional form, with rating specific individual frailty to account for heterogeneity within a rating group, as well as rating specific exposure to observable macro covariates, industries and a latent mean-reverting macro frailty factor. To estimate the model, we take the Bayesian approach and develop a Markov chain Monte Carlo-based algorithm. This approach enables us to quantify parameter uncertainty which is crucial for forecasting and it also provides a convenient tool for performing updates. Using a large default dataset spanning a period of 45 years including the 2008 financial crisis, we provide strong evidence for the dependence of individual frailty and exposure to systematic risk factors on credit rating. In out-of-sample testing, we showcase the ability of our model to forecast the number of defaults through business cycles and particularly in the financial crisis. Furthermore, by monitoring a collateralized loan obligation (CLO), we show that our model can perform reasonably well for the surveillance purpose with timely updates, even if the data used for the initial calibration of the model does not contain the firms in the CLO.

Suggested Citation

  • Shang Bu & Nan Guo & Lingfei Li, 2022. "Rating frailty, Bayesian updates, and portfolio credit risk analysis," Quantitative Finance, Taylor & Francis Journals, vol. 22(4), pages 777-797, April.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:4:p:777-797
    DOI: 10.1080/14697688.2021.2013519
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2021.2013519
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2021.2013519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    3. Jens Hilscher & Mungo Wilson, 2017. "Credit Ratings and Credit Risk: Is One Measure Enough?," Management Science, INFORMS, vol. 63(10), pages 3414-3437, October.
    4. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    5. Haitao Li & Martin T. Wells & Cindy L. Yu, 2008. "A Bayesian Analysis of Return Dynamics with Lévy Jumps," The Review of Financial Studies, Society for Financial Studies, vol. 21(5), pages 2345-2378, September.
    6. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    7. Black, Fischer, 1995. "Interest Rates as Options," Journal of Finance, American Finance Association, vol. 50(5), pages 1371-1376, December.
    8. Jing-Zhi Huang & Ming Huang, 2012. "How Much of the Corporate-Treasury Yield Spread Is Due to Credit Risk?," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 2(2), pages 153-202.
    9. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    2. Dainelli, Francesco & Bet, Gianmarco & Fabrizi, Eugenio, 2024. "The financial health of a company and the risk of its default: Back to the future," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    3. Alain Monfort & Fulvio Pegoraro & Jean-Paul Renne & Guillaume Roussellet, 2021. "Affine Modeling of Credit Risk, Pricing of Credit Events, and Contagion," Management Science, INFORMS, vol. 67(6), pages 3674-3693, June.
    4. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    5. Bo Becker & Victoria Ivashina, 2023. "Disruption and Credit Markets," Journal of Finance, American Finance Association, vol. 78(1), pages 105-139, February.
    6. Bátiz-Zuk Enrique & Mohamed Abdulkadir & Sánchez-Cajal Fátima, 2021. "Exploring the sources of loan default clustering using survival analysis with frailty," Working Papers 2021-14, Banco de México.
    7. Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.
    8. Xiangdong Liu & Jiahui Wu & Xianglong Li, 2023. "Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    9. Harjoat S. Bhamra & Christian Dorion & Alexandre Jeanneret & Michael Weber, 2018. "Low Inflation: High Default Risk AND High Equity Valuations," NBER Working Papers 25317, National Bureau of Economic Research, Inc.
    10. Kay Giesecke & Baeho Kim, 2011. "Systemic Risk: What Defaults Are Telling Us," Management Science, INFORMS, vol. 57(8), pages 1387-1405, August.
    11. Pierre Collin-Dufresne & Robert S. Goldstein & Fan Yang, 2010. "On the Relative Pricing of long Maturity S&P 500 Index Options and CDX Tranches," NBER Working Papers 15734, National Bureau of Economic Research, Inc.
    12. Escribano, Ana & Maggi, Mario, 2019. "Intersectoral default contagion: A multivariate Poisson autoregression analysis," Economic Modelling, Elsevier, vol. 82(C), pages 376-400.
    13. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    14. Xing, Kai & Luo, Dan & Liu, Lanlan, 2023. "Macroeconomic conditions, corporate default, and default clustering," Economic Modelling, Elsevier, vol. 118(C).
    15. Nusrat Jahan, 2022. "Macroeconomic Determinants of Corporate Credit Spreads: Evidence from Canada," Carleton Economic Papers 22-07, Carleton University, Department of Economics.
    16. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    17. Anna Dubinova & Andre Lucas & Sean Telg, 2021. "COVID-19, Credit Risk and Macro Fundamentals," Tinbergen Institute Discussion Papers 21-059/III, Tinbergen Institute.
    18. Marc Arnold & Dirk Hackbarth & Tatjana Xenia Puhan, 2018. "Financing Asset Sales and Business Cycles [Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries]," Review of Finance, European Finance Association, vol. 22(1), pages 243-277.
    19. Guo, Hui & Jiang, Xiaowen, 2021. "Aggregate Distress Risk and Equity Returns," Journal of Banking & Finance, Elsevier, vol. 133(C).
    20. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:4:p:777-797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.