IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i12p2041-2052.html
   My bibliography  Save this article

A new closed-form solution as an extension of the Black-Scholes formula allowing smile curve plotting

Author

Listed:
  • Yacin Jerbi

Abstract

In this paper, as a generalization of the Black-Scholes (BS) model, we elaborate a new closed-form solution for a uni-dimensional European option pricing model called the J -model. This closed-form solution is based on a new stochastic process, called the J -process, which is an extension of the Wiener process satisfying the martingale property. The J -process is based on a new statistical law called the J -law, which is an extension of the normal law. The J -law relies on four parameters in its general form. It has interesting asymmetry and tail properties, allowing it to fit the reality of financial markets with good accuracy, which is not the case for the normal law. Despite the use of one state variable, we find results similar to those of Heston dealing with the bi-dimensional stochastic volatility problem for pricing European calls. Inverting the BS formula, we plot the smile curve related to this closed-form solution. The J -model can also serve to determine the implied volatility by inverting the J -formula and can be used to price other kinds of options such as American options.

Suggested Citation

  • Yacin Jerbi, 2015. "A new closed-form solution as an extension of the Black-Scholes formula allowing smile curve plotting," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 2041-2052, December.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:12:p:2041-2052
    DOI: 10.1080/14697688.2012.762458
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.762458
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.762458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eckhard Platen & Renata Rendek, 2007. "Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices," Research Paper Series 194, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    5. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    6. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    9. Schmalensee, Richard & Trippi, Robert R, 1978. "Common Stock Volatility Expectations Implied by Option Premia," Journal of Finance, American Finance Association, vol. 33(1), pages 129-147, March.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Beckers, Stan, 1981. "Standard deviations implied in option prices as predictors of future stock price variability," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 363-381, September.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yacin Jerbi, 2016. "Early exercise premium method for pricing American options under the J-model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-26, December.
    2. Haiyang Fang & Dali Jiang & Tinghong Yang & Ling Fang & Jian Yang & Wu Li & Jing Zhao, 2018. "Network evolution model for supply chain with manufactures as the core," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.
    2. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    3. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    6. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    7. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    8. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    9. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    10. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    11. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    12. Yacin Jerbi, 2016. "Early exercise premium method for pricing American options under the J-model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-26, December.
    13. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    14. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, August.
    15. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    16. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    17. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    18. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    19. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    20. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    21. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:12:p:2041-2052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.