IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i10p1857-1879.html
   My bibliography  Save this article

Estimation of risk-neutral measures using quartic B-spline cumulative distribution functions with power tails

Author

Listed:
  • Seung Hwan Lee

Abstract

In this paper, we propose the B-spline (BSP) method, which overcomes problems with the smoothed implied volatility smile (SML) method for estimating option implied risk-neutral measures (RNMs). We model the risk-neutral cumulative distribution function (CDF) using quartic B-splines with power tails so that the resulting risk-neutral probability density function (PDF) has continuity and arbitrage-free properties. Since the number of knots is selected optimally in constructing the quartic B-spline risk-neutral CDF, our method avoids both overfitting and oversmoothing. To improve computational efficiency and accuracy, we introduce a three-step RNM estimation procedure that transforms a nonlinear optimization problem into a convex quadratic program. Monte-Carlo experiments and applications to S&P 500 index options suggest that the BSP method performs considerably better than the SML method. The BSP method always produces arbitrage-free RNM estimators and almost perfectly recovers the actual risk-neutral PDFs for various hypothetical distributions.

Suggested Citation

  • Seung Hwan Lee, 2014. "Estimation of risk-neutral measures using quartic B-spline cumulative distribution functions with power tails," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1857-1879, October.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:10:p:1857-1879
    DOI: 10.1080/14697688.2012.742202
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.742202
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.742202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    3. McCulloch, J Huston, 1971. "Measuring the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 44(1), pages 19-31, January.
    4. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    5. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    6. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    7. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    8. Stephen A. Ross, 1976. "Options and Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 90(1), pages 75-89.
    9. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    10. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    11. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    12. Buraschi, Andrea & Jackwerth, Jens, 2001. "The Price of a Smile: Hedging and Spanning in Option Markets," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 495-527.
    13. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    14. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    15. Ruijun Bu & Kaddour Hadri, 2007. "Estimating option implied risk-neutral densities using spline and hypergeometric functions," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 216-244, July.
    16. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    17. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    18. Andersson, Magnus & Lomakka, Magnus, 2005. "Evaluating implied RNDs by some new confidence interval estimation techniques," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1535-1557, June.
    19. Panigirtzoglou, Nikolaos & Skiadopoulos, George, 2004. "A new approach to modeling the dynamics of implied distributions: Theory and evidence from the S&P 500 options," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1499-1520, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.
    2. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    3. Liyuan Jiang & Shuang Zhou & Keren Li & Fangfang Wang & Jie Yang, 2018. "A New Nonparametric Estimate of the Risk-Neutral Density with Applications to Variance Swaps," Papers 1808.05289, arXiv.org, revised Feb 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.
    3. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    4. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    5. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    6. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    7. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    8. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    9. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
    10. Silvia Muzzioli, 2010. "Towards a volatility index for the Italian stock market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 10091, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    11. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    12. Jean-Baptiste Monnier, 2013. "Technical report : Risk-neutral density recovery via spectral analysis," Papers 1302.2567, arXiv.org.
    13. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    14. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    15. Jukka Sihvonen & Sami Vähämaa, 2014. "Forward‐Looking Monetary Policy Rules and Option‐Implied Interest Rate Expectations," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(4), pages 346-373, April.
    16. Nessim Souissi, 2017. "The Implied Risk Neutral Density Dynamics: Evidence from the S&P TSX 60 Index," Journal of Applied Mathematics, Hindawi, vol. 2017, pages 1-10, June.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    19. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
    20. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:10:p:1857-1879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.