IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i2p265-274.html
   My bibliography  Save this article

Multiscale analysis of economic time series by scale-dependent Lyapunov exponent

Author

Listed:
  • Jianbo Gao
  • Jing Hu
  • Wen-Wen Tung
  • Yi Zheng

Abstract

Economic time series usually exhibit complex behavior such as nonlinearity, fractal long-memory, and non-stationarity. Recently, considerable efforts have been made to detect chaos and fractal long-memory in finance. While evidence supporting fractal scaling in finance has been accumulating, it is now generally thought that financial time series may not be modeled by chaos or noisy chaos, since the estimated Lyapunov exponent (LE) is negative. A negative LE amounts to a negative Kolmogorov entropy, and thus implies simple regular dynamics of the economy. This is at odds with the general observation that the economy is highly complicated due to nonlinear and stochastic interactions among component systems and hierarchical regulations in the world economy. To resolve this dilemma, and to provide an effective means of characterizing fractal long-memory properties in non-stationary economic time series, we employ a multiscale complexity measure, the scale-dependent Lyapunov exponent (SDLE), to characterize economic time series. SDLE cannot only unambiguously distinguish low-dimensional chaos from noise, but also detect high-dimensional and intermittent chaos, as well as effectively deal with non-stationarity. With SDLE, we are able to show that the reported negative LE may correspond to large-scale convergence, but not imply the absence of small-scale divergence or noisy chaos in the world economy. Using US foreign exchange rate data as examples, we further show how SDLE can readily characterize fractal, persistent or anti-persistent long-range correlations in economic time series.

Suggested Citation

  • Jianbo Gao & Jing Hu & Wen-Wen Tung & Yi Zheng, 2013. "Multiscale analysis of economic time series by scale-dependent Lyapunov exponent," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 265-274, January.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:2:p:265-274
    DOI: 10.1080/14697688.2011.580774
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2011.580774
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2011.580774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim & Bekiros, Stelios, 2020. "Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    2. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    3. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    5. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    6. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    7. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    9. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    10. Vassilios G. Papavassiliou, 2016. "Allowing For Jump Measurements In Volatility: A High-Frequency Financial Data Analysis Of Individual Stocks," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 124-132, April.
    11. Monira Essa Aloud, 2016. "Profitability of Directional Change Based Trading Strategies: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 87-95.
    12. Cotter, John & Dowd, Kevin, 2007. "The tail risks of FX return distributions: A comparison of the returns associated with limit orders and market orders," Finance Research Letters, Elsevier, vol. 4(3), pages 146-154, September.
    13. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    14. Stefanescu, Razvan & Dumitriu, Ramona, 2015. "Conţinutul analizei seriilor de timp financiare [The Essentials of the Analysis of Financial Time Series]," MPRA Paper 67175, University Library of Munich, Germany.
    15. Challet, Damien & Stinchcombe, Robin, 2003. "Limit order market analysis and modelling: on a universal cause for over-diffusive prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 141-145.
    16. Feng, Yuanhua, 2002. "Modelling Different Volatility Components," CoFE Discussion Papers 02/18, University of Konstanz, Center of Finance and Econometrics (CoFE).
    17. Caporin, Massimiliano & Chang, Chia-Lin & McAleer, Michael, 2019. "Are the S&P 500 index and crude oil, natural gas and ethanol futures related for intra-day data?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 50-70.
    18. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    19. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    20. Masanori Hirano & Kiyoshi Izumi & Hiroyasu Matsushima & Hiroki Sakaji, 2020. "Comparing Actual and Simulated HFT Traders' Behavior for Agent Design," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-6.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:2:p:265-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.