IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v10y2010i4p431-442.html
   My bibliography  Save this article

Volatility conditional on price trends

Author

Listed:
  • Gilles Zumbach

Abstract

The influence of the past price behaviour on the realized volatility is investigated, showing that trending (driftless) prices lead to increased (decreased) realized volatility. This 'volatility induced by trend' constitutes a new stylized fact. The past price behaviour is measured by the product of two non-overlapping returns (of the form r × L[r] where L is the lag operator), and is different from the usual heteroskedasticity. The effect is studied empirically using USD/CHF foreign exchange data, in a large range of time horizons. On the modelling side, a set of ARCH based processes are modified in order to include the 'volatility induced by trend' effect, and their forecasting performances are compared. The aim is to understand the role and importance of the various terms that can be included in such a model. For a better forecast, it is shown that the main factor is the shape of the memory kernel (i.e. power law), and the next most important factor is the trend effect. The subtle role of mean reversion is also discussed.

Suggested Citation

  • Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:4:p:431-442
    DOI: 10.1080/14697680903266730
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680903266730
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903266730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Paul Lynch & Gilles Zumbach, 2003. "Market heterogeneities and the causal structure of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 320-331.
    3. Gilles Zumbach & Paul Lynch, 2001. "Heterogeneous volatility cascade in financial markets," Papers cond-mat/0105162, arXiv.org.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    5. Christian Bauer & Bernhard Herz, 2004. "Technical trading and the volatility of exchange rates," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 399-415.
    6. Zumbach, Gilles & Lynch, Paul, 2001. "Heterogeneous volatility cascade in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 521-529.
    7. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    8. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, January.
    9. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    10. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    2. Léo Parent, 2022. "The EWMA Heston model," Post-Print hal-04431111, HAL.
    3. Marcel Nutz & Andr'es Riveros Valdevenito, 2023. "On the Guyon-Lekeufack Volatility Model," Papers 2307.01319, arXiv.org, revised Jul 2024.
    4. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Working Papers hal-02998555, HAL.
    5. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    6. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    7. Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
    8. Marcel Nutz & Andrés Riveros Valdevenito, 2024. "On the Guyon–Lekeufack volatility model," Finance and Stochastics, Springer, vol. 28(4), pages 1203-1223, October.
    9. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    10. R'emy Chicheportiche, 2013. "Non-linear dependences in finance," Papers 1309.5073, arXiv.org.
    11. Jinniao Qiu & Antony Ware & Yang Yang, 2024. "Stochastic Path-Dependent Volatility Models for Price-Storage Dynamics in Natural Gas Markets and Discrete-Time Swing Option Pricing," Papers 2406.16400, arXiv.org.
    12. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    13. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2021. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Post-Print hal-02998555, HAL.
    14. Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org.
    15. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    16. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    17. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramazan Gencay & Nikola Gradojevic & Faruk Selcuk & Brandon Whitcher, 2010. "Asymmetry of information flow between volatilities across time scales," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 895-915.
    2. Gilles Zumbach, 2007. "Time reversal invariance in finance," Papers 0708.4022, arXiv.org.
    3. Gilles Zumbach, 2011. "Characterizing heteroskedasticity," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1357-1369, October.
    4. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    5. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    6. Hwang, Eunju & Jeon, ChanHyeok, 2024. "Nonnegative GARCH-type models with conditional Gamma distributions and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    7. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    8. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    9. Chaido Dritsaki, 2014. "The Dynamic Relationship between Stock Volatility and Trading Volume from the Athens Stock Exchange," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 3(3), pages 152-165.
    10. Peter Molnár, 2016. "High-low range in GARCH models of stock return volatility," Applied Economics, Taylor & Francis Journals, vol. 48(51), pages 4977-4991, November.
    11. Kumar, Dilip, 2015. "Sudden changes in extreme value volatility estimator: Modeling and forecasting with economic significance analysis," Economic Modelling, Elsevier, vol. 49(C), pages 354-371.
    12. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    13. Pourkhanali, Armin & Tafakori, Laleh & Bee, Marco, 2023. "Forecasting Value-at-Risk using functional volatility incorporating an exogenous effect," International Review of Financial Analysis, Elsevier, vol. 89(C).
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    15. Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
    16. Subrata Roy, 2020. "Stock Market Asymmetry and Investors’ Sensation on Prime Minister: Indian Evidence," Jindal Journal of Business Research, , vol. 9(2), pages 148-161, December.
    17. Subrata ROY, 2021. "Volatility Forecasting, Market Efficiency and Effect of Recession of SRI Indices," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(627), S), pages 259-284, Summer.
    18. David Mcmillan & Alan Speight, 2008. "Long-memory in high-frequency exchange rate volatility under temporal aggregation," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 251-261.
    19. Charles, Amelie & Darne, Olivier, 2006. "Large shocks and the September 11th terrorist attacks on international stock markets," Economic Modelling, Elsevier, vol. 23(4), pages 683-698, July.
    20. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:4:p:431-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.