IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.01319.html
   My bibliography  Save this paper

On the Guyon-Lekeufack Volatility Model

Author

Listed:
  • Marcel Nutz
  • Andr'es Riveros Valdevenito

Abstract

Guyon and Lekeufack recently proposed a path-dependent volatility model and documented its excellent performance in fitting market data and capturing stylized facts. The instantaneous volatility is modeled as a linear combination of two processes, one is an integral of weighted past price returns and the other is the square-root of an integral of weighted past squared volatility. Each of the weightings is built using two exponential kernels reflecting long and short memory. Mathematically, the model is a coupled system of four stochastic differential equations. Our main result is the wellposedness of this system: the model has a unique strong (non-explosive) solution for all parameter values. We also study the positivity of the resulting volatility process and the martingale property of the associated exponential price process.

Suggested Citation

  • Marcel Nutz & Andr'es Riveros Valdevenito, 2023. "On the Guyon-Lekeufack Volatility Model," Papers 2307.01319, arXiv.org, revised Jul 2024.
  • Handle: RePEc:arx:papers:2307.01319
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.01319
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Foschi & Andrea Pascucci, 2008. "Path dependent volatility," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(1), pages 13-32, May.
    2. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    3. Rémy Chicheportiche & Jean-Philippe Bouchaud, 2014. "The fine-structure of volatility feedback I: Multi-scale self-reflexivity," Post-Print hal-00722261, HAL.
    4. Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    2. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    3. Sekine, Jun, 2008. "Marginal distribution of some path-dependent stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1846-1850, September.
    4. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    5. Jazaerli, Samy & F. Saporito, Yuri, 2017. "Functional Itô calculus, path-dependence and the computation of Greeks," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3997-4028.
    6. Andrea Pascucci, 2008. "Free boundary and optimal stopping problems for American Asian options," Finance and Stochastics, Springer, vol. 12(1), pages 21-41, January.
    7. Foschi, Paolo & Pascucci, Andrea, 2009. "Calibration of a path-dependent volatility model: Empirical tests," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2219-2235, April.
    8. Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org.
    9. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    10. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Working Papers hal-02998555, HAL.
    11. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2021. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Post-Print hal-02998555, HAL.
    12. Léo Parent, 2022. "The EWMA Heston model," Post-Print hal-04431111, HAL.
    13. Marcel Nutz & Andrés Riveros Valdevenito, 2024. "On the Guyon–Lekeufack volatility model," Finance and Stochastics, Springer, vol. 28(4), pages 1203-1223, October.
    14. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    15. Gushchin, Alexander A. & Küchler, Uwe, 2004. "On oscillations of the geometric Brownian motion with time-delayed drift," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 19-24, October.
    16. L. Lin & M. Schatz & D. Sornette, 2019. "A simple mechanism for financial bubbles: time-varying momentum horizon," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 937-959, June.
    17. Yang Wang & Xiao Xu & Jizhou Zhang, 2021. "Optimal Investment Strategy for DC Pension Plan with Stochastic Income and Inflation Risk under the Ornstein–Uhlenbeck Model," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
    18. Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
    19. Jean-Philippe Bouchaud & Damien Challet, 2016. "Why have asset price properties changed so little in 200 years," Papers 1605.00634, arXiv.org.
    20. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.01319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.