IDEAS home Printed from https://ideas.repec.org/a/taf/oaefxx/v5y2017i1p1355503.html
   My bibliography  Save this article

A simulation study on the distributions of disturbances in the GARCH model

Author

Listed:
  • Lingbing Feng
  • Yanlin Shi

Abstract

Generalized autoregressive conditional heteroskedastic (GARCH) model is a standard approach to study the volatility behaviour of financial time series. The original specification of GARCH model is developed based on Normal distribution for the disturbances, which cannot accommodate fat-tailed properties commonly existing in financial time series. Consequently, the resulting estimates are not efficient. Traditionally, the Student’s t-distribution and General Error Distribution (GED) are used alternatively to solve this problem. However, a recent study points out that those alternative distributions lack stability under aggregation. This leaves the appropriate choice of the distribution of disturbances in the GARCH model still an open question. In this paper, we present the theoretical features and desirability of the tempered stable distribution. Further, we conduct a series of simulation studies to demonstrate that the GARCH model with this distribution consistently outperforms those with the Normal, Student-t and GED distributions. This result is robust with empirical evidence of the S&P 500 daily return. Therefore, we argue that the tempered stable distribution could be a widely useful tool for modelling the financial volatility in general contexts with a GARCH-type specification.

Suggested Citation

  • Lingbing Feng & Yanlin Shi, 2017. "A simulation study on the distributions of disturbances in the GARCH model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1355503-135, January.
  • Handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1355503
    DOI: 10.1080/23322039.2017.1355503
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23322039.2017.1355503
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23322039.2017.1355503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susmel, Raul & Engle, Robert F., 1994. "Hourly volatility spillovers between international equity markets," Journal of International Money and Finance, Elsevier, vol. 13(1), pages 3-25, February.
    2. Constantinides, A. & Savel’ev, S.E., 2013. "Modelling price dynamics: A hybrid truncated Lévy Flight–GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2072-2078.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
    5. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    6. Mabrouk, Samir & Saadi, Samir, 2012. "Parametric Value-at-Risk analysis: Evidence from stock indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 305-321.
    7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    9. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    10. Seung‐Ryong Yang & B. Wade Brorsen, 1993. "Nonlinear dynamics of daily futures prices: Conditional heteroskedasticity or chaos?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(2), pages 175-191, April.
    11. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Fabozzi, Frank J., 2008. "Financial market models with Lévy processes and time-varying volatility," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1363-1378, July.
    12. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    13. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    14. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    15. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Potanin, Bogdan & Trifonov, Juri, 2021. "The influence of investors’ expectations on oil prices," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 76-90.
    2. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    3. Richard T. A. Samuel & Charles Chimedza & Caston Sigauke, 2023. "Simulation Framework to Determine Suitable Innovations for Volatility Persistence Estimation: The GARCH Approach," JRFM, MDPI, vol. 16(9), pages 1-30, September.
    4. Tong Liu & Yanlin Shi, 2022. "Innovation of the Component GARCH Model: Simulation Evidence and Application on the Chinese Stock Market," Mathematics, MDPI, vol. 10(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    2. Tong Liu & Yanlin Shi, 2022. "Innovation of the Component GARCH Model: Simulation Evidence and Application on the Chinese Stock Market," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    3. Yanlin Shi & Lingbing Feng & Tong Fu, 2020. "Markov Regime-Switching in-Mean Model with Tempered Stable Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1275-1299, April.
    4. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    5. Shi, Yanlin & Ho, Kin-Yip, 2015. "Modeling high-frequency volatility with three-state FIGARCH models," Economic Modelling, Elsevier, vol. 51(C), pages 473-483.
    6. Feng Lingbing & Shi Yanlin, 2020. "Markov regime-switching autoregressive model with tempered stable distribution: simulation evidence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(1), pages 1-27, February.
    7. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    8. Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
    9. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    10. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    11. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    12. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    13. Karali, Berna & Ramirez, Octavio A., 2014. "Macro determinants of volatility and volatility spillover in energy markets," Energy Economics, Elsevier, vol. 46(C), pages 413-421.
    14. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    15. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    16. Michael McKenzie & Heather Mitchell & Robert Brooks & Robert Faff, 2001. "Power ARCH modelling of commodity futures data on the London Metal Exchange," The European Journal of Finance, Taylor & Francis Journals, vol. 7(1), pages 22-38.
    17. Francois Chesnay & Eric Jondeau, 2001. "Does Correlation Between Stock Returns Really Increase During Turbulent Periods?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(1), pages 53-80, February.
    18. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2011. "Time series analysis for financial market meltdowns," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1879-1891, August.
    19. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    20. Hou, Yang & Holmes, Mark, 2017. "On the effects of static and autoregressive conditional higher order moments on dynamic optimal hedging," MPRA Paper 82000, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1355503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/OAEF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.