IDEAS home Printed from https://ideas.repec.org/a/taf/mpopst/v13y2006i1p19-37.html
   My bibliography  Save this article

Understanding Mortality Rate Deceleration and Heterogeneity

Author

Listed:
  • David Steinsaltz
  • Kenneth Wachter

Abstract

Generic relationships between heterogeneity in population frailty and flattening of aggregate population hazard functions at extreme ages are drawn from classical mathematical results on the limiting behavior of Laplace transforms. In particular, it shows that the population hazard function converges to a constant precisely when the distribution of unobserved heterogeneity in initial mortalities behaves asymptotically as a polynomial near zero.

Suggested Citation

  • David Steinsaltz & Kenneth Wachter, 2006. "Understanding Mortality Rate Deceleration and Heterogeneity," Mathematical Population Studies, Taylor & Francis Journals, vol. 13(1), pages 19-37.
  • Handle: RePEc:taf:mpopst:v:13:y:2006:i:1:p:19-37
    DOI: 10.1080/08898480500452117
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/08898480500452117
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/08898480500452117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "Justifying the Gompertz curve of mortality via the generalized Polya process of shocks," Theoretical Population Biology, Elsevier, vol. 109(C), pages 54-62.
    2. Maxim Finkelstein, 2012. "Discussing the Strehler-Mildvan model of mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(9), pages 191-206.
    3. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    4. Elizabeth Wrigley-Field, 2020. "Multidimensional Mortality Selection: Why Individual Dimensions of Frailty Don’t Act Like Frailty," Demography, Springer;Population Association of America (PAA), vol. 57(2), pages 747-777, April.
    5. Li, Ting & Anderson, James J., 2009. "The vitality model: A way to understand population survival and demographic heterogeneity," Theoretical Population Biology, Elsevier, vol. 76(2), pages 118-131.
    6. Maxim Finkelstein, 2009. "‘Understanding the shape of the mixture failure rate’ Rejoinder by Maxim Finkelstein," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 673-677, November.
    7. Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
    8. Kenneth Manton & Igor Akushevich & Alexander Kulminski, 2008. "Human Mortality at Extreme Ages: Data from the NLTCS and Linked Medicare Records," Mathematical Population Studies, Taylor & Francis Journals, vol. 15(3), pages 137-159.
    9. Alberto Palloni & Hiram Beltrán-Sánchez, 2017. "Discrete Barker Frailty and Warped Mortality Dynamics at Older Ages," Demography, Springer;Population Association of America (PAA), vol. 54(2), pages 655-671, April.
    10. Finkelstein, Maxim, 2012. "On ordered subpopulations and population mortality at advanced ages," Theoretical Population Biology, Elsevier, vol. 81(4), pages 292-299.
    11. Kenneth W. Wachter, 2008. "Biodemography comes of Age," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(40), pages 1501-1512.
    12. László Németh & Trifon I Missov, 2018. "Adequate life-expectancy reconstruction for adult human mortality data," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-8, June.
    13. Maxim S. Finkelstein, 2009. "Understanding the shape of the mixture failure rate (with engineering and demographic applications)," MPIDR Working Papers WP-2009-031, Max Planck Institute for Demographic Research, Rostock, Germany.
    14. Hartemink, Nienke & Missov, Trifon I. & Caswell, Hal, 2017. "Stochasticity, heterogeneity, and variance in longevity in human populations," Theoretical Population Biology, Elsevier, vol. 114(C), pages 107-116.
    15. Maxim Finkelstein, 2009. "Understanding the shape of the mixture failure rate (with engineering and demographic applications)," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 643-663, November.
    16. Maxim S. Finkelstein, 2011. "On ordered subpopulations and population mortality at advanced ages," MPIDR Working Papers WP-2011-022, Max Planck Institute for Demographic Research, Rostock, Germany.
    17. Elizabeth Wrigley-Field, 2014. "Mortality Deceleration and Mortality Selection: Three Unexpected Implications of a Simple Model," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 51-71, February.
    18. MARK BEBBINGTON & CHIN-DIEW LAI & RIcARDAS ZITIKIS, 2011. "Modelling Deceleration in Senescent Mortality," Mathematical Population Studies, Taylor & Francis Journals, vol. 18(1), pages 18-37.
    19. Missov, Trifon I. & Finkelstein, Maxim, 2011. "Admissible mixing distributions for a general class of mixture survival models with known asymptotics," Theoretical Population Biology, Elsevier, vol. 80(1), pages 64-70.
    20. Dennis M. Feehan, 2018. "Separating the Signal From the Noise: Evidence for Deceleration in Old-Age Death Rates," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2025-2044, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:13:y:2006:i:1:p:19-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GMPS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.