IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2019i1p4-d299443.html
   My bibliography  Save this article

Type II Topp Leone Power Lomax Distribution with Applications

Author

Listed:
  • Sanaa Al-Marzouki

    (Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah 21551, Saudi Arabia)

  • Farrukh Jamal

    (Department of Statistics, Govt. S.A Postgraduate College Dera Nawab Sahib, Bahawalpur, Punjab 63100, Pakistan)

  • Christophe Chesneau

    (Department of Mathematics, Université de Caen, LMNO, Campus II, Science 3, 14032 Caen, France)

  • Mohammed Elgarhy

    (Valley High Institute for Management Finance and Information Systems, Obour, Qaliubia 11828, Egypt)

Abstract

In many areas of applied sciences, the last step of a study often consists in analyzing in depth the collected data. Among all the kinds of data, the lifetime data are well-known to convey a great deal of information whose capture is necessary to identify one or more key phenomena. In this regards, numerous mathematical models have been proposed, including those based on lifetime distributions. In this paper, we introduce a new four-parameter lifetime distribution based on the type II Topp-Leone-G family and the power Lomax distribution. In comparison to the existing distributions, the new one is characterized by very flexible probability functions: increasing, decreasing, J, and reverse J shapes are observed for the probability density and hazard rate functions, giving first signs on the potential of adaptability of the related model. With this idea in mind, the new distribution is studied in detail, from both the theoretical and applied sides. After showing its main mathematical properties, the related model is investigated with estimation of the parameters by the maximum likelihood method. We applied it to two practical datasets, including the well-know aircraft windshield data. We show that the new model performs better than several modern adversary models, motivating its use in an applied setting.

Suggested Citation

  • Sanaa Al-Marzouki & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2019. "Type II Topp Leone Power Lomax Distribution with Applications," Mathematics, MDPI, vol. 8(1), pages 1-26, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2019:i:1:p:4-:d:299443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/4/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/4/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zohdy M. Nofal & Ahmed Z. Afify & Haitham M. Yousof & Gauss M. Cordeiro, 2017. "The generalized transmuted-G family of distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 4119-4136, April.
    2. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    3. M. E. Mead, 2015. "Generalized Inverse Gamma Distribution and its Application in Reliability," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(7), pages 1426-1435, April.
    4. Carl M. Harris, 1968. "The Pareto Distribution as a Queue Service Discipline," Operations Research, INFORMS, vol. 16(2), pages 307-313, April.
    5. William T. Shaw & Ian R. C. Buckley, 2009. "The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map," Papers 0901.0434, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marlien Pieters & Iolanthe M. Kruger & Herculina S. Kruger & Yolandi Breet & Sarah J. Moss & Andries van Oort & Petra Bester & Cristian Ricci, 2023. "Strategies of Modelling Incident Outcomes Using Cox Regression to Estimate the Population Attributable Risk," IJERPH, MDPI, vol. 20(14), pages 1-9, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Majdah M. Badr & Ibrahim Elbatal & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2020. "The Transmuted Odd Fréchet-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    3. Malinovskii, Vsevolod K. & Kosova, Ksenia O., 2014. "Simulation analysis of ruin capital in Sparre Andersen’s model of risk," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 184-193.
    4. Bercher, J.-F. & Vignat, C., 2008. "A new look at q-exponential distributions via excess statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5422-5432.
    5. Iliev, A. & Kyurkchiev, N. & Markov, S., 2017. "On the approximation of the step function by some sigmoid functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 223-234.
    6. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    7. Robert King & Irene Lena Hudson & Muhammad Shuaib Khan, 2016. "Transmuted Kumaraswamy Distribution," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(2), pages 183-210, June.
    8. Elfessi, Abdulaziz & Chun Jin, 1996. "On robust estimation of the common scale parameter of several Pareto distributions," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 345-352, September.
    9. Salem A. Alyami & Ibrahim Elbatal & Naif Alotaibi & Ehab M. Almetwally & Mohammed Elgarhy, 2022. "Modeling to Factor Productivity of the United Kingdom Food Chain: Using a New Lifetime-Generated Family of Distributions," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    10. Muhammad Shuaib Khan & Robert King & Irene Lena Hudson, 2016. "Transmuted Kumaraswamy Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 183-210, June.
    11. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    12. D. Kern, 1983. "Minimum variance unbiased estimation in the Pareto distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 30(1), pages 15-19, December.
    13. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    14. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2020. "On the Analysis of New COVID-19 Cases in Pakistan Using an Exponentiated Version of the M Family of Distributions," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    15. Majid Asadi & Somayeh Zarezadeh, 2020. "A unified approach to constructing correlation coefficients between random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 657-676, August.
    16. Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    17. Thomas G. Koch, 2014. "Bankruptcy, Medical Insurance, And A Law With Unintended Consequences," Health Economics, John Wiley & Sons, Ltd., vol. 23(11), pages 1326-1339, November.
    18. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    19. Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.
    20. Majdah Badr & Muhammad Ijaz, 2021. "The Exponentiated Exponential Burr XII distribution: Theory and application to lifetime and simulated data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2019:i:1:p:4-:d:299443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.