IDEAS home Printed from https://ideas.repec.org/a/taf/jriskr/v20y2017i9p1132-1153.html
   My bibliography  Save this article

Perceptions of electricity-use communications: effects of information, format, and individual differences

Author

Listed:
  • Casey Canfield
  • Wändi Bruine de Bruin
  • Gabrielle Wong-Parodi

Abstract

Electricity bills could be an effective strategy for improving communications about consumers’ electricity use and promoting electricity savings. However, quantitative communications about electricity use may be difficult to understand, especially for consumers with low energy literacy. Here, we build on the health communication and graph comprehension literature to inform electricity bill design, with the goal of improving understanding, preferences for the presented communication, and intentions to save electricity. In a survey-based experiment, each participant saw a hypothetical electricity bill for a family with relatively high electricity use, covering information about (a) historical use, (b) comparisons to neighbors, and (c) historical use with appliance breakdown. Participants saw all information types in one of three formats including (a) tables, (b) bar graphs, and (c) icon graphs. We report on three main findings. First, consumers understood each type of electricity-use information the most when it was presented in a table, perhaps because tables facilitate simple point reading. Second, preferences and intentions to save electricity were the strongest for the historical use information, independent of format. Third, individuals with lower energy literacy understood all information less. We discuss implications for designing utility bills that are understandable, perceived as useful, and motivate consumers to save energy.

Suggested Citation

  • Casey Canfield & Wändi Bruine de Bruin & Gabrielle Wong-Parodi, 2017. "Perceptions of electricity-use communications: effects of information, format, and individual differences," Journal of Risk Research, Taylor & Francis Journals, vol. 20(9), pages 1132-1153, September.
  • Handle: RePEc:taf:jriskr:v:20:y:2017:i:9:p:1132-1153
    DOI: 10.1080/13669877.2015.1121909
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13669877.2015.1121909
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13669877.2015.1121909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deb Feldman-Stewart & Nancy Kocovski & Beth A. McConnell & Michael D. Brundage & William J. Mackillop, 2000. "Perception of Quantitative Information for Treatment Decisions," Medical Decision Making, , vol. 20(2), pages 228-238, April.
    2. Noel T. Brewer & Melissa B. Gilkey & Sarah E. Lillie & Bradford W. Hesse & Stacey L. Sheridan, 2012. "Tables or Bar Graphs? Presenting Test Results in Electronic Medical Records," Medical Decision Making, , vol. 32(4), pages 545-553, July.
    3. Owens, Susan & Driffill, Louise, 2008. "How to change attitudes and behaviours in the context of energy," Energy Policy, Elsevier, vol. 36(12), pages 4412-4418, December.
    4. DeWaters, Jan E. & Powers, Susan E., 2011. "Energy literacy of secondary students in New York State (USA): A measure of knowledge, affect, and behavior," Energy Policy, Elsevier, vol. 39(3), pages 1699-1710, March.
    5. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    6. Krishnamurti, Tamar & Davis, Alexander L. & Wong-Parodi, Gabrielle & Wang, Jack & Canfield, Casey, 2013. "Creating an in-home display: Experimental evidence and guidelines for design," Applied Energy, Elsevier, vol. 108(C), pages 448-458.
    7. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    8. Zografakis, Nikolaos & Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2008. "Effective education for energy efficiency," Energy Policy, Elsevier, vol. 36(8), pages 3216-3222, August.
    9. Davis, Larry R., 1989. "Report format and the decision maker's task: An experimental investigation," Accounting, Organizations and Society, Elsevier, vol. 14(5-6), pages 495-508, October.
    10. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    11. Marilyn M. Schapira & Ann B. Nattinger & Colleen A. McHorney, 2001. "Frequency or Probability? A Qualitative Study of Risk Communication Formats Used in Health Care," Medical Decision Making, , vol. 21(6), pages 459-467, December.
    12. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    13. Isaac M. Lipkus, 2007. "Numeric, Verbal, and Visual Formats of Conveying Health Risks: Suggested Best Practices and Future Recommendations," Medical Decision Making, , vol. 27(5), pages 696-713, September.
    14. Garcia-Retamero, Rocio & Galesic, Mirta, 2010. "Who proficts from visual aids: Overcoming challenges in people's understanding of risks," Social Science & Medicine, Elsevier, vol. 70(7), pages 1019-1025, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    2. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    3. Komatsu, Hidenori & Nishio, Ken-ichiro, 2015. "An experimental study on motivational change for electricity conservation by normative messages," Applied Energy, Elsevier, vol. 158(C), pages 35-43.
    4. Khosrowpour, Ardalan & Xie, Yimeng & Taylor, John E. & Hong, Yili, 2016. "One size does not fit all: Establishing the need for targeted eco-feedback," Applied Energy, Elsevier, vol. 184(C), pages 523-530.
    5. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Brandsma, Jeroen S. & Blasch, Julia E., 2019. "One for all? – The impact of different types of energy feedback and goal setting on individuals’ motivation to conserve electricity," Energy Policy, Elsevier, vol. 135(C).
    7. Crago, Christine L. & Spraggon, John M. & Hunter, Elizabeth, 2020. "Motivating non-ratepaying households with feedback and social nudges: A cautionary tale," Energy Policy, Elsevier, vol. 145(C).
    8. Ntona, Eirini & Arabatzis, Garyfallos & Kyriakopoulos, Grigorios L., 2015. "Energy saving: Views and attitudes of students in secondary education," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 1-15.
    9. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    10. McAndrew, Ryan & Mulcahy, Rory & Gordon, Ross & Russell-Bennett, Rebekah, 2021. "Household energy efficiency interventions: A systematic literature review," Energy Policy, Elsevier, vol. 150(C).
    11. Lee, Lung-Sheng & Lee, Yi-Fang & Altschuld, James W. & Pan, Ying-Ju, 2015. "Energy literacy: Evaluating knowledge, affect, and behavior of students in Taiwan," Energy Policy, Elsevier, vol. 76(C), pages 98-106.
    12. Simcock, Neil & MacGregor, Sherilyn & Catney, Philip & Dobson, Andrew & Ormerod, Mark & Robinson, Zoe & Ross, Simon & Royston, Sarah & Marie Hall, Sarah, 2014. "Factors influencing perceptions of domestic energy information: Content, source and process," Energy Policy, Elsevier, vol. 65(C), pages 455-464.
    13. Giovanna Morelli & Cosimo Magazzino & Antonia Rosa Gurrieri & Cesare Pozzi & Marco Mele, 2022. "Designing Smart Energy Systems in an Industry 4.0 Paradigm towards Sustainable Environment," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    14. Šćepanović, Sanja & Warnier, Martijn & Nurminen, Jukka K., 2017. "The role of context in residential energy interventions: A meta review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1146-1168.
    15. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    16. Sweeney, Jillian C. & Kresling, Johannes & Webb, Dave & Soutar, Geoffrey N. & Mazzarol, Tim, 2013. "Energy saving behaviours: Development of a practice-based model," Energy Policy, Elsevier, vol. 61(C), pages 371-381.
    17. S. Barnett Burns & Beth Savan, 2018. "The Post-Intervention Persistence of Energy Conservation Behaviors: An Evaluation of the ‘Start Green’ Program," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    18. Garcia-Retamero, Rocio & Galesic, Mirta, 2010. "Who proficts from visual aids: Overcoming challenges in people's understanding of risks," Social Science & Medicine, Elsevier, vol. 70(7), pages 1019-1025, April.
    19. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    20. Carroll, James & Lyons, Seán & Denny, Eleanor, 2014. "Reducing household electricity demand through smart metering: The role of improved information about energy saving," Energy Economics, Elsevier, vol. 45(C), pages 234-243.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jriskr:v:20:y:2017:i:9:p:1132-1153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RJRR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.