IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i1p227-237.html
   My bibliography  Save this article

Semiparametric imputation using conditional Gaussian mixture models under item nonresponse

Author

Listed:
  • Danhyang Lee
  • Jae Kwang Kim

Abstract

Imputation is a popular technique for handling item nonresponse. Parametric imputation is based on a parametric model for imputation and is not robust against the failure of the imputation model. Nonparametric imputation is fully robust but is not applicable when the dimension of covariates is large due to the curse of dimensionality. Semiparametric imputation is another robust imputation based on a flexible model where the number of model parameters can increase with the sample size. In this paper, we propose a new semiparametric imputation based on a more flexible model assumption than the Gaussian mixture model. In the proposed mixture model, we assume a conditional Gaussian model for the study variable given the auxiliary variables, but the marginal distribution of the auxiliary variables is not necessarily Gaussian. The proposed mixture model is more flexible and achieves a better approximation than the Gaussian mixture models. The proposed method is applicable to high‐dimensional covariate problem by including a penalty function in the conditional log‐likelihood function. The proposed method is applied to the 2017 Korean Household Income and Expenditure Survey conducted by Statistics Korea.

Suggested Citation

  • Danhyang Lee & Jae Kwang Kim, 2022. "Semiparametric imputation using conditional Gaussian mixture models under item nonresponse," Biometrics, The International Biometric Society, vol. 78(1), pages 227-237, March.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:227-237
    DOI: 10.1111/biom.13410
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13410
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jae Kwang Kim, 2004. "Fractional hot deck imputation," Biometrika, Biometrika Trust, vol. 91(3), pages 559-578, September.
    2. Sixia Chen & David Haziza, 2019. "Recent Developments in Dealing with Item Non‐response in Surveys: A Critical Review," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 192-218, May.
    3. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    4. Hang J. Kim & Jerome P. Reiter & Quanli Wang & Lawrence H. Cox & Alan F. Karr, 2014. "Multiple Imputation of Missing or Faulty Values Under Linear Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 375-386, July.
    5. Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
    6. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    7. Jae Kwang Kim, 2011. "Parametric fractional imputation for missing data analysis," Biometrika, Biometrika Trust, vol. 98(1), pages 119-132.
    8. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    3. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    4. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    5. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    7. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    8. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    11. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    12. Shutes, Karl & Adcock, Chris, 2013. "Regularized Extended Skew-Normal Regression," MPRA Paper 58445, University Library of Munich, Germany, revised 09 Sep 2014.
    13. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
    14. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    15. Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
    16. Feng Hong & Lu Tian & Viswanath Devanarayan, 2023. "Improving the Robustness of Variable Selection and Predictive Performance of Regularized Generalized Linear Models and Cox Proportional Hazard Models," Mathematics, MDPI, vol. 11(3), pages 1-13, January.
    17. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    18. Peter Bühlmann & Domagoj Ćevid, 2020. "Deconfounding and Causal Regularisation for Stability and External Validity," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 114-134, December.
    19. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    20. Zakariya Yahya Algamal & Muhammad Hisyam Lee, 2019. "A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 753-771, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:227-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.