IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i515p1209-1221.html
   My bibliography  Save this article

Forward Variable Selection for Sparse Ultra-High Dimensional Varying Coefficient Models

Author

Listed:
  • Ming-Yen Cheng
  • Toshio Honda
  • Jin-Ting Zhang

Abstract

Varying coefficient models have numerous applications in a wide scope of scientific areas. While enjoying nice interpretability, they also allow for flexibility in modeling dynamic impacts of the covariates. But, in the new era of big data, it is challenging to select the relevant variables when the dimensionality is very large. Recently, several works are focused on this important problem based on sparsity assumptions; they are subject to some limitations, however. We introduce an appealing forward selection procedure. It selects important variables sequentially according to a reduction in sum of squares criterion and it employs a Bayesian information criterion (BIC)-based stopping rule. Clearly, it is simple to implement and fast to compute, and possesses many other desirable properties from theoretical and numerical viewpoints. The BIC is a special case of the extended BIC (EBIC) when an extra tuning parameter in the latter vanishes. We establish rigorous screening consistency results when either BIC or EBIC is used as the stopping criterion. The theoretical results depend on some conditions on the eigenvalues related to the design matrices, which can be relaxed in some situations. Results of an extensive simulation study and a real data example are also presented to show the efficacy and usefulness of our procedure. Supplementary materials for this article are available online.

Suggested Citation

  • Ming-Yen Cheng & Toshio Honda & Jin-Ting Zhang, 2016. "Forward Variable Selection for Sparse Ultra-High Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1209-1221, July.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1209-1221
    DOI: 10.1080/01621459.2015.1080708
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1080708
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1080708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoliang Wang & Liugen Xue & Gaorong Li & Fei Lu, 2019. "Spline estimator for ultra-high dimensional partially linear varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 657-677, June.
    2. Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
    3. HONDA, Toshio & 本田, 敏雄 & ING, Ching-Kang & WU, Wei-Ying, 2017. "Adaptively weighted group Lasso for semiparametric quantile regression models," Discussion Papers 2017-04, Graduate School of Economics, Hitotsubashi University.
    4. Honda, Toshio & 本田, 敏雄, 2019. "The de-biased group Lasso estimation for varying coefficient models," Discussion Papers 2018-04, Graduate School of Economics, Hitotsubashi University.
    5. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
    6. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    7. Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
    8. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
    9. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    10. Eun Ryung Lee & Seyoung Park & Sang Kyu Lee & Hyokyoung G. Hong, 2023. "Quantile forward regression for high-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 769-806, October.
    11. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    12. Yang, Guangren & Zhang, Ling & Li, Runze & Huang, Yuan, 2019. "Feature screening in ultrahigh-dimensional varying-coefficient Cox model," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 284-297.
    13. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    14. Haofeng Wang & Hongxia Jin & Xuejun Jiang & Jingzhi Li, 2022. "Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation," Mathematics, MDPI, vol. 10(23), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1209-1221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.