IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4551-d990469.html
   My bibliography  Save this article

Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation

Author

Listed:
  • Haofeng Wang

    (Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
    Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China)

  • Hongxia Jin

    (Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China)

  • Xuejun Jiang

    (Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China)

  • Jingzhi Li

    (Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China)

Abstract

In ultrahigh dimensional data analysis, to keep computational performance well and good statistical properties still working, nonparametric additive models face increasing challenges. To overcome them, we introduce a methodology of model selection for high dimensional nonparametric additive models. Our approach is to propose a novel group screening procedure via nonparametric smoothing ridge estimation (GRIE) to find the importance of each covariate. It is then combined with the sure screening property of GRIE and the model selection property of extended Bayesian information criteria (EBIC) to select the suitable sub-models in nonparametric additive models. Theoretically, we establish the strong consistency of model selection for the proposed method. Extensive simulations and two real datasets illustrate the outstanding performance of the GRIE-EBIC method.

Suggested Citation

  • Haofeng Wang & Hongxia Jin & Xuejun Jiang & Jingzhi Li, 2022. "Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4551-:d:990469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ning Hao & Hao Helen Zhang, 2017. "A Note on High-Dimensional Linear Regression With Interactions," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 291-297, October.
    2. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    3. Fan, Jianqing & Feng, Yang & Song, Rui, 2011. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 544-557.
    4. Junwei Lu & Mladen Kolar & Han Liu, 2020. "Kernel Meets Sieve: Post-Regularization Confidence Bands for Sparse Additive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2084-2099, December.
    5. Jianqing Fan & Yunbei Ma & Wei Dai, 2014. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1270-1284, September.
    6. Ming-Yen Cheng & Toshio Honda & Jin-Ting Zhang, 2016. "Forward Variable Selection for Sparse Ultra-High Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1209-1221, July.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Tingyou Zhou & Liping Zhu & Chen Xu & Runze Li, 2020. "Model-Free Forward Screening Via Cumulative Divergence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1393-1405, July.
    9. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    10. Ray Bai & Gemma E. Moran & Joseph L. Antonelli & Yong Chen & Mary R. Boland, 2022. "Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 184-197, January.
    11. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    12. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
    2. Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    3. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    4. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
    5. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    6. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    7. Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
    8. Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
    9. He, Kevin & Kang, Jian & Hong, Hyokyoung G. & Zhu, Ji & Li, Yanming & Lin, Huazhen & Xu, Han & Li, Yi, 2019. "Covariance-insured screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 100-114.
    10. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    11. Randy C. S. Lai & Jan Hannig & Thomas C. M. Lee, 2015. "Generalized Fiducial Inference for Ultrahigh-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 760-772, June.
    12. He, Xin & Mao, Xiaojun & Wang, Zhonglei, 2024. "Nonparametric augmented probability weighting with sparsity," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    13. Sweata Sen & Damitri Kundu & Kiranmoy Das, 2023. "Variable selection for categorical response: a comparative study," Computational Statistics, Springer, vol. 38(2), pages 809-826, June.
    14. Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
    15. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    16. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    17. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    18. Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
    19. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    20. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4551-:d:990469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.