IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v29y2023i4d10.1007_s10985-023-09603-w.html
   My bibliography  Save this article

Quantile forward regression for high-dimensional survival data

Author

Listed:
  • Eun Ryung Lee

    (Sungkyunkwan University)

  • Seyoung Park

    (Sungkyunkwan University)

  • Sang Kyu Lee

    (Michigan State University
    National Cancer Institute)

  • Hyokyoung G. Hong

    (National Cancer Institute)

Abstract

Despite the urgent need for an effective prediction model tailored to individual interests, existing models have mainly been developed for the mean outcome, targeting average people. Additionally, the direction and magnitude of covariates’ effects on the mean outcome may not hold across different quantiles of the outcome distribution. To accommodate the heterogeneous characteristics of covariates and provide a flexible risk model, we propose a quantile forward regression model for high-dimensional survival data. Our method selects variables by maximizing the likelihood of the asymmetric Laplace distribution (ALD) and derives the final model based on the extended Bayesian Information Criterion (EBIC). We demonstrate that the proposed method enjoys a sure screening property and selection consistency. We apply it to the national health survey dataset to show the advantages of a quantile-specific prediction model. Finally, we discuss potential extensions of our approach, including the nonlinear model and the globally concerned quantile regression coefficients model.

Suggested Citation

  • Eun Ryung Lee & Seyoung Park & Sang Kyu Lee & Hyokyoung G. Hong, 2023. "Quantile forward regression for high-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 769-806, October.
  • Handle: RePEc:spr:lifeda:v:29:y:2023:i:4:d:10.1007_s10985-023-09603-w
    DOI: 10.1007/s10985-023-09603-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-023-09603-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-023-09603-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Seyoung & Lee, Eun Ryung, 2021. "Hypothesis testing of varying coefficients for regional quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Kong, Yinfei & Li, Yujie & Zerom, Dawit, 2019. "Screening and selection for quantile regression using an alternative measure of variable importance," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 435-455.
    3. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    4. Nena Karavasiloglou & Giulia Pestoni & Miriam Wanner & David Faeh & Sabine Rohrmann, 2019. "Healthy lifestyle is inversely associated with mortality in cancer survivors: Results from the Third National Health and Nutrition Examination Survey (NHANES III)," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-11, June.
    5. Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
    6. Ming-Yen Cheng & Toshio Honda & Jin-Ting Zhang, 2016. "Forward Variable Selection for Sparse Ultra-High Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1209-1221, July.
    7. Shujie Ma & Runze Li & Chih-Ling Tsai, 2017. "Variable Screening via Quantile Partial Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 650-663, April.
    8. Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
    9. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    10. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    11. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    12. Hyokyoung G. Hong & Jian Kang & Yi Li, 2018. "Conditional screening for ultra-high dimensional covariates with survival outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 45-71, January.
    13. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    14. Qi Zheng & Hyokyoung G. Hong & Yi Li, 2020. "Building generalized linear models with ultrahigh dimensional features: A sequentially conditional approach," Biometrics, The International Biometric Society, vol. 76(1), pages 47-60, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
    2. Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
    3. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    4. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
    5. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    6. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
    7. Kong, Yinfei & Li, Yujie & Zerom, Dawit, 2019. "Screening and selection for quantile regression using an alternative measure of variable importance," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 435-455.
    8. Haofeng Wang & Hongxia Jin & Xuejun Jiang & Jingzhi Li, 2022. "Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    9. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    10. Yuyang Liu & Pengfei Pi & Shan Luo, 2023. "A semi-parametric approach to feature selection in high-dimensional linear regression models," Computational Statistics, Springer, vol. 38(2), pages 979-1000, June.
    11. De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.
    12. Hongqi Chen & Ji Hyung Lee, 2024. "Predictive Quantile Regression with High-Dimensional Predictors: The Variable Screening Approach," Papers 2410.15097, arXiv.org.
    13. Ke Yu & Shan Luo, 2022. "A sequential feature selection procedure for high-dimensional Cox proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1109-1142, December.
    14. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    15. Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
    16. Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
    17. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    18. Canhong Wen & Xueqin Wang & Shaoli Wang, 2015. "Laplace Error Penalty-based Variable Selection in High Dimension," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 685-700, September.
    19. Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    20. Li, Lu & Ke, Chenlu & Yin, Xiangrong & Yu, Zhou, 2023. "Generalized martingale difference divergence: Detecting conditional mean independence with applications in variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:29:y:2023:i:4:d:10.1007_s10985-023-09603-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.