IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i505p424-436.html
   My bibliography  Save this article

Principal Flows

Author

Listed:
  • Victor M. Panaretos
  • Tung Pham
  • Zhigang Yao

Abstract

We revisit the problem of extending the notion of principal component analysis (PCA) to multivariate datasets that satisfy nonlinear constraints, therefore lying on Riemannian manifolds. Our aim is to determine curves on the manifold that retain their canonical interpretability as principal components, while at the same time being flexible enough to capture nongeodesic forms of variation. We introduce the concept of a principal flow, a curve on the manifold passing through the mean of the data, and with the property that, at any point of the curve, the tangent velocity vector attempts to fit the first eigenvector of a tangent space PCA locally at that same point, subject to a smoothness constraint. That is, a particle flowing along the principal flow attempts to move along a path of maximal variation of the data, up to smoothness constraints. The rigorous definition of a principal flow is given by means of a Lagrangian variational problem, and its solution is reduced to an ODE problem via the Euler--Lagrange method. Conditions for existence and uniqueness are provided, and an algorithm is outlined for the numerical solution of the problem. Higher order principal flows are also defined. It is shown that global principal flows yield the usual principal components on a Euclidean space. By means of examples, it is illustrated that the principal flow is able to capture patterns of variation that can escape other manifold PCA methods.

Suggested Citation

  • Victor M. Panaretos & Tung Pham & Zhigang Yao, 2014. "Principal Flows," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 424-436, March.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:424-436
    DOI: 10.1080/01621459.2013.849199
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.849199
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.849199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred Kume & Ian L. Dryden & Huiling Le, 2007. "Shape-space smoothing splines for planar landmark data," Biometrika, Biometrika Trust, vol. 94(3), pages 513-528.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwang‐Rae Kim & Ian L. Dryden & Huiling Le & Katie E. Severn, 2021. "Smoothing splines on Riemannian manifolds, with applications to 3D shape space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 108-132, February.
    2. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    3. Chiara Brombin & Luigi Salmaso & Lara Fontanella & Luigi Ippoliti, 2015. "Nonparametric combination-based tests in dynamic shape analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 460-484, December.
    4. Stephan F. Huckemann, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 71-75, March.
    5. M. Moghimbeygi & M. Golalizadeh, 2017. "Longitudinal shape analysis by using the spherical coordinates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1282-1295, May.
    6. Ian L. Dryden & Kwang-Rae Kim & Huiling Le, 2019. "Bayesian Linear Size-and-Shape Regression with Applications to Face Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 83-103, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:424-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.