IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i507p905-930.html
   My bibliography  Save this article

Identifying Genetic Variants for Addiction via Propensity Score Adjusted Generalized Kendall's Tau

Author

Listed:
  • Yuan Jiang
  • Ni Li
  • Heping Zhang

Abstract

Identifying replicable genetic variants for addiction has been extremely challenging. Besides the common difficulties with genome-wide association studies (GWAS), environmental factors are known to be critical to addiction, and comorbidity is widely observed. Despite the importance of environmental factors and comorbidity for addiction study, few GWAS analyses adequately considered them due to the limitations of the existing statistical methods. Although parametric methods have been developed to adjust for covariates in association analysis, difficulties arise when the traits are multivariate because there is no ready-to-use model for them. Recent nonparametric development includes U -statistics to measure the phenotype-genotype association weighted by a similarity score of covariates. However, it is not clear how to optimize the similarity score. Therefore, we propose a semiparametric method to measure the association adjusted by covariates. In our approach, the nonparametric U -statistic is adjusted by parametric estimates of propensity scores using the idea of inverse probability weighting. The new measurement is shown to be asymptotically unbiased under our null hypothesis while the previous nonweighted and weighted ones are not. Simulation results show that our test improves power as opposed to the nonweighted and two other weighted U -statistic methods, and it is particularly powerful for detecting gene-environment interactions. Finally, we apply our proposed test to the Study of Addiction: Genetics and Environment (SAGE) to identify genetic variants for addiction. Novel genetic variants are found from our analysis, which warrant further investigation in the future.

Suggested Citation

  • Yuan Jiang & Ni Li & Heping Zhang, 2014. "Identifying Genetic Variants for Addiction via Propensity Score Adjusted Generalized Kendall's Tau," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 905-930, September.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:905-930
    DOI: 10.1080/01621459.2014.901223
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.901223
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.901223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wensheng Zhu & Yuan Jiang & Heping Zhang, 2012. "Nonparametric Covariate-Adjusted Association Tests Based on the Generalized Kendall's Tau," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 1-11, March.
    2. Zhang, Heping & Liu, Ching-Ti & Wang, Xueqin, 2010. "An Association Test for Multiple Traits Based on the Generalized Kendall’s Tau," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 473-481.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Cui & Pengfei Wang & Wensheng Zhu, 2021. "Covariate-adjusted multiple testing in genome-wide association studies via factorial hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 737-757, September.
    2. Colin O. Wu & Gang Zheng & Minjung Kwak, 2013. "A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples," Biometrics, The International Biometric Society, vol. 69(2), pages 417-426, June.
    3. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    4. Yan Ma, 2012. "On inference for Kendall's τ within a longitudinal data setting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2441-2452, July.
    5. Liu, Dungang & Li, Shaobo & Yu, Yan & Moustaki, Irini, 2020. "Assessing partial association between ordinal variables: quantification, visualization, and hypothesis testing," LSE Research Online Documents on Economics 105558, London School of Economics and Political Science, LSE Library.
    6. Weiming Zhang & Michael P. Epstein & Tasha E. Fingerlin & Debashis Ghosh, 2017. "Links Between the Sequence Kernel Association and the Kernel-Based Adaptive Cluster Tests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 246-258, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:905-930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.