IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v12y2024i2p13-d1391256.html
   My bibliography  Save this article

On the Validity of Granger Causality for Ecological Count Time Series

Author

Listed:
  • Konstantinos G. Papaspyropoulos

    (Laboratory of Forest Economics, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Dimitris Kugiumtzis

    (Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Knowledge of causal relationships is fundamental for understanding the dynamic mechanisms of ecological systems. To detect such relationships from multivariate time series, Granger causality, an idea first developed in econometrics, has been formulated in terms of vector autoregressive (VAR) models. Granger causality for count time series, often seen in ecology, has rarely been explored, and this may be due to the difficulty in estimating autoregressive models on multivariate count time series. The present research investigates the appropriateness of VAR-based Granger causality for ecological count time series by conducting a simulation study using several systems of different numbers of variables and time series lengths. VAR-based Granger causality for count time series (DVAR) seems to be estimated efficiently even for two counts in long time series. For all the studied time series lengths, DVAR for more than eight counts matches the Granger causality effects obtained by VAR on the continuous-valued time series well. The positive results, also in two ecological time series, suggest the use of VAR-based Granger causality for assessing causal relationships in real-world count time series even with few distinct integer values or many zeros.

Suggested Citation

  • Konstantinos G. Papaspyropoulos & Dimitris Kugiumtzis, 2024. "On the Validity of Granger Causality for Ecological Count Time Series," Econometrics, MDPI, vol. 12(2), pages 1-21, May.
  • Handle: RePEc:gam:jecnmx:v:12:y:2024:i:2:p:13-:d:1391256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/12/2/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/12/2/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
    2. Marcelo Bourguignon & Josemar Rodrigues & Manoel Santos-Neto, 2019. "Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(1), pages 101-118, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    2. Di Mari, Roberto & Bakk, Zsuzsa & Oser, Jennifer & Kuha, Jouni, 2023. "A two-step estimator for multilevel latent class analysis with covariates," LSE Research Online Documents on Economics 119994, London School of Economics and Political Science, LSE Library.
    3. Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.
    4. Irshad, M.R. & Jodrá, P. & Krishna, A. & Maya, R., 2023. "On the discrete analogue of the Teissier distribution and its associated INAR(1) process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 227-245.
    5. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations," LSE Research Online Documents on Economics 112222, London School of Economics and Political Science, LSE Library.
    6. Emrah Altun & Naushad Mamode Khan, 2022. "Modelling with the Novel INAR(1)-PTE Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1735-1751, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:12:y:2024:i:2:p:13-:d:1391256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.