IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i3p547-557.html
   My bibliography  Save this article

Addressing the problem of missing data in decision tree modeling

Author

Listed:
  • Saiedeh Haji-Maghsoudi
  • Azam Rastegari
  • Behshid Garrusi
  • Mohammad Reza Baneshi

Abstract

Tree-based models (TBMs) can substitute missing data using the surrogate approach (SUR). The aim of this study is to compare the performance of statistical imputation against the performance of SUR in TBMs. Employing empirical data, a TBM was constructed. Thereafter, 10%, 20%, and 40% of variable values appeared as the first split was deleted, and imputed with and without the use of outcome variables in the imputation model (IMP− and IMP+). This was repeated one thousand times. Absolute relative bias above 0.10 was defined as sever (SARB). Subsequently, in a series of simulations, the following parameters were changed: the degree of correlation among variables, the number of variables truly associated with the outcome, and the missing rate. At a 10% missing rate, the proportion of times SARB was observed in either SUR or IMP− was two times higher than in IMP+ (28% versus 13%). When the missing rate was increased to 20%, all these proportions were approximately doubled. Irrespective of the missing rate, IMP+ was about 65% less likely to produce SARB than SUR. Results of IMP− and SUR were comparable up to a 20% missing rate. At a high missing rate, IMP− was 76% more likely to provide SARB estimates. Statistical imputation of missing data and the use of outcome variable in the imputation model is recommended, even in the content of TBM.

Suggested Citation

  • Saiedeh Haji-Maghsoudi & Azam Rastegari & Behshid Garrusi & Mohammad Reza Baneshi, 2018. "Addressing the problem of missing data in decision tree modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 547-557, February.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:547-557
    DOI: 10.1080/02664763.2017.1284184
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1284184
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1284184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Hapfelmeier, A. & Hothorn, T. & Ulm, K., 2012. "Recursive partitioning on incomplete data using surrogate decisions and multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1552-1565.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hapfelmeier, Alexander & Hornung, Roman & Haller, Bernhard, 2023. "Efficient permutation testing of variable importance measures by the example of random forests," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    2. Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
    3. Jörg Kalbfuß & Reto Odermatt & Alois Stutzer, 2018. "Medical marijuana laws and mental health in the United States," CEP Discussion Papers dp1546, Centre for Economic Performance, LSE.
    4. Qingrong Tan & Yan Cai & Fen Luo & Dongbo Tu, 2023. "Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 103-141, February.
    5. David Podgorelec & Borut Žalik & Domen Mongus & Dino Vlahek, 2024. "A New Alternating Suboptimal Dynamic Programming Algorithm with Applications for Feature Selection," Mathematics, MDPI, vol. 12(13), pages 1-22, June.
    6. Limon Barua & Bo Zou & Yan Zhou & Yulin Liu, 2023. "Modeling household online shopping demand in the U.S.: a machine learning approach and comparative investigation between 2009 and 2017," Transportation, Springer, vol. 50(2), pages 437-476, April.
    7. Bogdan Mihai Neamțu & Gabriela Visa & Ionela Maniu & Maria Livia Ognean & Rubén Pérez-Elvira & Andrei Dragomir & Maria Agudo & Ciprian Radu Șofariu & Mihaela Gheonea & Antoniu Pitic & Remus Brad & Cla, 2021. "A Decision-Tree Approach to Assist in Forecasting the Outcomes of the Neonatal Brain Injury," IJERPH, MDPI, vol. 18(9), pages 1-19, April.
    8. Rachel A. Oldroyd & Michelle A. Morris & Mark Birkin, 2021. "Predicting Food Safety Compliance for Informed Food Outlet Inspections: A Machine Learning Approach," IJERPH, MDPI, vol. 18(23), pages 1-20, November.
    9. Fellinghauer, Bernd & Bühlmann, Peter & Ryffel, Martin & von Rhein, Michael & Reinhardt, Jan D., 2013. "Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 132-152.
    10. Enrico Biffis & Erik Chavez & Alexis Louaas & Pierre Picard, 2022. "Parametric insurance and technology adoption in developing countries," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 7-44, March.
    11. Paola Zuccolotto, 2010. "Evaluating the impact of a grouping variable on Job Satisfaction drivers," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 287-305, June.
    12. Gerhard Tutz & Moritz Berger, 2016. "Item-focussed Trees for the Identification of Items in Differential Item Functioning," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 727-750, September.
    13. Shu-Fu Kuo & Yu-Shan Shih, 2012. "Variable selection for functional density trees," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1387-1395, December.
    14. Achim Zeileis & Torsten Hothorn, 2013. "A toolbox of permutation tests for structural change," Statistical Papers, Springer, vol. 54(4), pages 931-954, November.
    15. Charles B. Perkins & J. Christina Wang, 2019. "How Magic a Bullet Is Machine Learning for Credit Analysis? An Exploration with FinTech Lending Data," Working Papers 19-16, Federal Reserve Bank of Boston.
    16. Christian Aßmann & Ariane Würbach & Solange Goßmann & Ferdinand Geissler & Anika Bela, 2017. "Nonparametric Multiple Imputation for Questionnaires with Individual Skip Patterns and Constraints: The Case of Income Imputation in the National Educational Panel Study," Sociological Methods & Research, , vol. 46(4), pages 864-897, November.
    17. Nur Şahver Uslu & Ali Hakan Büyüklü, 2024. "The Dynamics of the Profit Margin in a Component Maintenance, Repair, and Overhaul (MRO) within the Aviation Industry: An Analytical Approach Using Gradient Boosting, Variable Clustering, and the Gini," Sustainability, MDPI, vol. 16(15), pages 1-31, July.
    18. Wang, Hui & Mongiano, Gabriele & Fanchini, Davide & Titone, Patrizia & Tamborini, Luigi & Bregaglio, Simone, 2021. "Varietal susceptibility overcomes climate change effects on the future trends of rice blast disease in Northern Italy," Agricultural Systems, Elsevier, vol. 193(C).
    19. Thelma Dede Baddoo & Zhijia Li & Samuel Nii Odai & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni & Samuel Ato Andam-Akorful, 2021. "Comparison of Missing Data Infilling Mechanisms for Recovering a Real-World Single Station Streamflow Observation," IJERPH, MDPI, vol. 18(16), pages 1-26, August.
    20. Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:547-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.