IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6470-d1445043.html
   My bibliography  Save this article

The Dynamics of the Profit Margin in a Component Maintenance, Repair, and Overhaul (MRO) within the Aviation Industry: An Analytical Approach Using Gradient Boosting, Variable Clustering, and the Gini Index

Author

Listed:
  • Nur Şahver Uslu

    (Graduate School of Science and Engineering, Yıldız Technical University, Davutpasa Campus, 34220 Istanbul, Turkey)

  • Ali Hakan Büyüklü

    (Department of Statistics, Faculty of Arts & Science, Yıldız Technical University, Davutpasa Campus, 34220 Istanbul, Turkey)

Abstract

This study focuses on the dynamics of the profit margin within the aviation MRO industry, using operational data from a small and medium-sized enterprise (SME) MRO company between 2013 and 2021. Especially in SME MROs, profit margin analysis provides an advantage in competing with the large companies that dominate the industry. Therefore, the operational data were prepared for analysis to identify the variables related to the profit margin. This study’s data cleaning and transformation processes can serve as a guideline for similarly sized companies. The research aims to address the complex relationships among the factors influencing profit margins in this industry. The objective is to utilise these factors in making strategic decisions to increase the profit margin of an SME MRO company. Applying gradient boosting algorithms as the analytical framework should allow identifying the correct relationships between the profit margin and input variables according to time for the SME MRO company. Another important aspect of this study is to increase the accuracy of the gradient boosting model by utilising the interactive grouping methodology. The variable selection was performed by using the Gini indexes of the variables using interactive grouping as a criterion in selecting the variables to be included in the model. After the data cleaning, transformation, and selection, the input variables for the gradient boosting model were Part Description, Parts Billed Current (part cost), Labour Billed Current (labour cost), Diff Shipping Entry (turnaround time (TAT)), Diff Quote Entry (time to quotation (TTQ)), Manager, Department, and Status. In this study, the profitability model indicates that the SME MRO company should initially focus on part numbers and the departments, secondly on standardisation of and expertise in preferred workshop units, and lastly, on highly qualified and effective technical department leaders and increasing labour. The aviation industry emerges as a sector that requires such analytical studies. It is hoped that the study will serve as a foundational work for SME MRO companies in the aviation industry.

Suggested Citation

  • Nur Şahver Uslu & Ali Hakan Büyüklü, 2024. "The Dynamics of the Profit Margin in a Component Maintenance, Repair, and Overhaul (MRO) within the Aviation Industry: An Analytical Approach Using Gradient Boosting, Variable Clustering, and the Gini," Sustainability, MDPI, vol. 16(15), pages 1-31, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6470-:d:1445043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Vasile DEAC & Gheorghe CARSTEA & Constantin BAGU & Florea PARVU, 2010. "The Modern Approach to Industrial Maintenance Management," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(2), pages 133-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalbfuss, Jörg & Odermatt, Reto & Stutzer, Alois, 2024. "Medical marijuana laws and mental health in the United States," Health Economics, Policy and Law, Cambridge University Press, vol. 19(3), pages 307-322, July.
    2. Qingrong Tan & Yan Cai & Fen Luo & Dongbo Tu, 2023. "Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 103-141, February.
    3. David Podgorelec & Borut Žalik & Domen Mongus & Dino Vlahek, 2024. "A New Alternating Suboptimal Dynamic Programming Algorithm with Applications for Feature Selection," Mathematics, MDPI, vol. 12(13), pages 1-22, June.
    4. Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.
    5. Burim Ramosaj & Markus Pauly, 2019. "Predicting missing values: a comparative study on non-parametric approaches for imputation," Computational Statistics, Springer, vol. 34(4), pages 1741-1764, December.
    6. Limon Barua & Bo Zou & Yan Zhou & Yulin Liu, 2023. "Modeling household online shopping demand in the U.S.: a machine learning approach and comparative investigation between 2009 and 2017," Transportation, Springer, vol. 50(2), pages 437-476, April.
    7. Rachel A. Oldroyd & Michelle A. Morris & Mark Birkin, 2021. "Predicting Food Safety Compliance for Informed Food Outlet Inspections: A Machine Learning Approach," IJERPH, MDPI, vol. 18(23), pages 1-20, November.
    8. Enrico Biffis & Erik Chavez & Alexis Louaas & Pierre Picard, 2022. "Parametric insurance and technology adoption in developing countries," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 7-44, March.
    9. Paola Zuccolotto, 2010. "Evaluating the impact of a grouping variable on Job Satisfaction drivers," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 287-305, June.
    10. Gerhard Tutz & Moritz Berger, 2016. "Item-focussed Trees for the Identification of Items in Differential Item Functioning," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 727-750, September.
    11. Montes, Ignacio & Miranda, Enrique & Montes, Susana, 2014. "Stochastic dominance with imprecise information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 868-886.
    12. Shu-Fu Kuo & Yu-Shan Shih, 2012. "Variable selection for functional density trees," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1387-1395, December.
    13. Daniel L. Chen & Markus Loecher, 2022. "Mood and the Malleability of Moral Reasoning: The Impact of Irrelevant Factors on Judicial Decisions," Working Papers hal-03864854, HAL.
    14. Xiaomu Ye & Pengfei Ding & Dawei Jin & Chuanyue Zhou & Yi Li & Jin Zhang, 2023. "Intelligent Analysis of Construction Costs of Shield Tunneling in Complex Geological Conditions by Machine Learning Method," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
    15. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    16. Achim Zeileis & Torsten Hothorn, 2013. "A toolbox of permutation tests for structural change," Statistical Papers, Springer, vol. 54(4), pages 931-954, November.
    17. Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
    18. Ahlrichs, Jakob & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2022. "Impact of socio-economic factors on local energetic retrofitting needs - A data analytics approach," Energy Policy, Elsevier, vol. 160(C).
    19. Hapfelmeier, Alexander & Hornung, Roman & Haller, Bernhard, 2023. "Efficient permutation testing of variable importance measures by the example of random forests," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    20. Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6470-:d:1445043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.