IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1552-1565.html
   My bibliography  Save this article

Recursive partitioning on incomplete data using surrogate decisions and multiple imputation

Author

Listed:
  • Hapfelmeier, A.
  • Hothorn, T.
  • Ulm, K.

Abstract

The occurrence of missing data is a major problem in statistical data analysis. All scientific fields and data of all kinds and size are touched by this problem. There is a number of ad-hoc solutions which unfortunately lead to a loss of power, biased inference, underestimation of variability and distorted relationships between variables. A more promising approach of rising popularity is multiple imputation by chained equations (MICE) also known as imputation by full conditional specification (FCS). Alternatives to imputation are given by methods with built-in procedures. These include recursive partitioning by classification and regression trees as well as corresponding Random Forests. However there is only few literature comparing the two approaches. Existing evaluations often lack generalizability due to restrictions on data structure and simulation schemes. The application of both methods to several kinds of data and different simulation settings is meant to improve and extend the comparative analyses. Classification and regression studies are examined. Recursive partitioning is executed by two popular tree and one Random Forest implementation. Findings show that multiple imputation produces ambiguous performance results for both, simulated and real life data. Using surrogates instead is a fast and simple way to achieve performances which are only negligible worse and in many cases even superior.

Suggested Citation

  • Hapfelmeier, A. & Hothorn, T. & Ulm, K., 2012. "Recursive partitioning on incomplete data using surrogate decisions and multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1552-1565.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1552-1565
    DOI: 10.1016/j.csda.2011.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003550
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Horton, Nicholas J. & Kleinman, Ken P., 2007. "Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models," The American Statistician, American Statistical Association, vol. 61, pages 79-90, February.
    3. Templ, Matthias & Kowarik, Alexander & Filzmoser, Peter, 2011. "Iterative stepwise regression imputation using standard and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2793-2806, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Aßmann & Ariane Würbach & Solange Goßmann & Ferdinand Geissler & Anika Bela, 2017. "Nonparametric Multiple Imputation for Questionnaires with Individual Skip Patterns and Constraints: The Case of Income Imputation in the National Educational Panel Study," Sociological Methods & Research, , vol. 46(4), pages 864-897, November.
    2. Hapfelmeier, Alexander & Hornung, Roman & Haller, Bernhard, 2023. "Efficient permutation testing of variable importance measures by the example of random forests," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    3. Zhang, Mimi & Hu, Qingpei & Xie, Min & Yu, Dan, 2014. "Lower confidence limit for reliability based on grouped data using a quantile-filling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 96-111.
    4. Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
    5. Saiedeh Haji-Maghsoudi & Azam Rastegari & Behshid Garrusi & Mohammad Reza Baneshi, 2018. "Addressing the problem of missing data in decision tree modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 547-557, February.
    6. Bogdan Mihai Neamțu & Gabriela Visa & Ionela Maniu & Maria Livia Ognean & Rubén Pérez-Elvira & Andrei Dragomir & Maria Agudo & Ciprian Radu Șofariu & Mihaela Gheonea & Antoniu Pitic & Remus Brad & Cla, 2021. "A Decision-Tree Approach to Assist in Forecasting the Outcomes of the Neonatal Brain Injury," IJERPH, MDPI, vol. 18(9), pages 1-19, April.
    7. Thelma Dede Baddoo & Zhijia Li & Samuel Nii Odai & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni & Samuel Ato Andam-Akorful, 2021. "Comparison of Missing Data Infilling Mechanisms for Recovering a Real-World Single Station Streamflow Observation," IJERPH, MDPI, vol. 18(16), pages 1-26, August.
    8. Fellinghauer, Bernd & Bühlmann, Peter & Ryffel, Martin & von Rhein, Michael & Reinhardt, Jan D., 2013. "Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 132-152.
    9. Tüselmann, Heinz & Sinkovics, Rudolf R. & Pishchulov, Grigory, 2015. "Towards a consolidation of worldwide journal rankings – A classification using random forests and aggregate rating via data envelopment analysis," Omega, Elsevier, vol. 51(C), pages 11-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
    2. repec:jss:jstsof:45:i04 is not listed on IDEAS
    3. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    4. Louis Anthony (Tony) Cox, Jr & Douglas A. Popken, 2008. "Overcoming Confirmation Bias in Causal Attribution: A Case Study of Antibiotic Resistance Risks," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1155-1172, October.
    5. David (David Patrick) Madden, 2012. "The relationship between low birthweight and socioeconomic status in Ireland," Working Papers 201214, School of Economics, University College Dublin.
    6. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    7. Jörg Kalbfuß & Reto Odermatt & Alois Stutzer, 2018. "Medical marijuana laws and mental health in the United States," CEP Discussion Papers dp1546, Centre for Economic Performance, LSE.
    8. Upadhayay, Neha B. & Rocchetta, Silvia & Gupta, Shivam & Kamble, Sachin & Stekelorum, Rebecca, 2024. "Blazing the trail: The role of digital and green servitization on technological innovation," Technovation, Elsevier, vol. 130(C).
    9. McDonough, Ian K. & Millimet, Daniel L., 2017. "Missing data, imputation, and endogeneity," Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
    10. Arthur Stepchenko & Jurij Chizhov & Ludmila Aleksejeva, 2018. "Transfer of the data preprocessing parameters and fore- casting models," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 4(6), pages 214-221.
    11. Qingrong Tan & Yan Cai & Fen Luo & Dongbo Tu, 2023. "Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 103-141, February.
    12. Zhong, Hua & Hu, Wuyang, 2015. "Farmers’ Willingness to Engage in Best Management Practices: an Application of Multiple Imputation," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196962, Southern Agricultural Economics Association.
    13. Cain Polidano & Ha Vu, 2012. "Labour market impacts from disability onset," ANU Working Papers in Economics and Econometrics 2012-583, Australian National University, College of Business and Economics, School of Economics.
    14. repec:jss:jstsof:29:i09 is not listed on IDEAS
    15. Valentino Dardanoni & Giuseppe De Luca & Salvatore Modica & Franco Peracchi, 2012. "A generalized missing-indicator approach to regression with imputed covariates," Stata Journal, StataCorp LP, vol. 12(4), pages 575-604, December.
    16. David Podgorelec & Borut Žalik & Domen Mongus & Dino Vlahek, 2024. "A New Alternating Suboptimal Dynamic Programming Algorithm with Applications for Feature Selection," Mathematics, MDPI, vol. 12(13), pages 1-22, June.
    17. Siddique, Juned & Harel, Ofer, 2009. "MIDAS: A SAS Macro for Multiple Imputation Using Distance-Aided Selection of Donors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i09).
    18. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    19. Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.
    20. James Honaker & Gary King, 2010. "What to Do about Missing Values in Time‐Series Cross‐Section Data," American Journal of Political Science, John Wiley & Sons, vol. 54(2), pages 561-581, April.
    21. Burim Ramosaj & Markus Pauly, 2019. "Predicting missing values: a comparative study on non-parametric approaches for imputation," Computational Statistics, Springer, vol. 34(4), pages 1741-1764, December.
    22. Limon Barua & Bo Zou & Yan Zhou & Yulin Liu, 2023. "Modeling household online shopping demand in the U.S.: a machine learning approach and comparative investigation between 2009 and 2017," Transportation, Springer, vol. 50(2), pages 437-476, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1552-1565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.