IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i1p162-180.html
   My bibliography  Save this article

Shrinkage estimation in lognormal regression model for censored data

Author

Listed:
  • Shakhawat Hossain
  • Hatem A. Howlader

Abstract

We introduce in this paper, the shrinkage estimation method in the lognormal regression model for censored data involving many predictors, some of which may not have any influence on the response of interest. We develop the asymptotic properties of the shrinkage estimators (SEs) using the notion of asymptotic distributional biases and risks. We show that if the shrinkage dimension exceeds two, the asymptotic risk of the SEs is strictly less than the corresponding classical estimators. Furthermore, we study the penalty (LASSO and adaptive LASSO) estimation methods and compare their relative performance with the SEs. A simulation study for various combinations of the inactive predictors and censoring percentages shows that the SEs perform better than the penalty estimators in certain parts of the parameter space, especially when there are many inactive predictors in the model. It also shows that the shrinkage and penalty estimators outperform the classical estimators. A real-life data example using Worcester heart attack study is used to illustrate the performance of the suggested estimators.

Suggested Citation

  • Shakhawat Hossain & Hatem A. Howlader, 2017. "Shrinkage estimation in lognormal regression model for censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 162-180, January.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:1:p:162-180
    DOI: 10.1080/02664763.2016.1168365
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1168365
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1168365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Huang & Shuangge Ma & Huiliang Xie, 2006. "Regularized Estimation in the Accelerated Failure Time Model with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 62(3), pages 813-820, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shakhawat Hossain & Shahedul A. Khan, 2020. "Shrinkage estimation of the exponentiated Weibull regression model for time‐to‐event data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 592-610, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    2. Sijian Wang & Bin Nan & Ji Zhu & David G. Beer, 2008. "Doubly Penalized Buckley–James Method for Survival Data with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 64(1), pages 132-140, March.
    3. Xiaochao Xia & Binyan Jiang & Jialiang Li & Wenyang Zhang, 2016. "Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 547-569, October.
    4. T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
    5. Khan Md Hasinur Rahaman & Bhadra Anamika & Howlader Tamanna, 2019. "Stability selection for lasso, ridge and elastic net implemented with AFT models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.
    6. Fang, Kuangnan & Wang, Xiaoyan & Shia, Ben-Chang & Ma, Shuangge, 2016. "Identification of proportionality structure with two-part models using penalization," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 12-24.
    7. Jialiang Li & Qi Zheng & Limin Peng & Zhipeng Huang, 2016. "Survival impact index and ultrahigh‐dimensional model‐free screening with survival outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1145-1154, December.
    8. Ma, Shuangge & Dai, Ying & Huang, Jian & Xie, Yang, 2012. "Identification of breast cancer prognosis markers via integrative analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2718-2728.
    9. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
    10. Dong, Yan & Li, Daoji & Zheng, Zemin & Zhou, Jia, 2022. "Reproducible feature selection in high-dimensional accelerated failure time models," Statistics & Probability Letters, Elsevier, vol. 181(C).
    11. Engler David & Li Yi, 2009. "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, February.
    12. Torben Martinussen & Thomas H. Scheike, 2009. "Covariate Selection for the Semiparametric Additive Risk Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 602-619, December.
    13. Yue Mu & Li Jialiang, 2017. "Improvement Screening for Ultra-High Dimensional Data with Censored Survival Outcomes and Varying Coefficients," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-16, May.
    14. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    15. Cheng, Chao & Feng, Xingdong & Huang, Jian & Jiao, Yuling & Zhang, Shuang, 2022. "ℓ0-Regularized high-dimensional accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    16. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    17. Lee, Kyu Ha & Chakraborty, Sounak & Sun, Jianguo, 2017. "Variable selection for high-dimensional genomic data with censored outcomes using group lasso prior," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 1-13.
    18. Guo-Liang Tian & Mingqiu Wang & Lixin Song, 2014. "Variable selection in the high-dimensional continuous generalized linear model with current status data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 467-483, March.
    19. Xiao Song & Shuangge Ma, 2010. "Penalised variable selection with U-estimates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 499-515.
    20. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:1:p:162-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.