IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i15p2756-2777.html
   My bibliography  Save this article

Simulated maximum likelihood estimation in joint models for multiple longitudinal markers and recurrent events of multiple types, in the presence of a terminal event

Author

Listed:
  • M. H. Hof
  • J. Z. Musoro
  • R. B. Geskus
  • G. H. Struijk
  • I. J. M. ten Berge
  • A. H. Zwinderman

Abstract

In medical studies we are often confronted with complex longitudinal data. During the follow-up period, which can be ended prematurely by a terminal event (e.g. death), a subject can experience recurrent events of multiple types. In addition, we collect repeated measurements from multiple markers. An adverse health status, represented by ‘bad’ marker values and an abnormal number of recurrent events, is often associated with the risk of experiencing the terminal event. In this situation, the missingness of the data is not at random and, to avoid bias, it is necessary to model all data simultaneously using a joint model. The correlations between the repeated observations of a marker or an event type within an individual are captured by normally distributed random effects. Because the joint likelihood contains an analytically intractable integral, Bayesian approaches or quadrature approximation techniques are necessary to evaluate the likelihood. However, when the number of recurrent event types and markers is large, the dimensionality of the integral is high and these methods are too computationally expensive. As an alternative, we propose a simulated maximum-likelihood approach based on quasi-Monte Carlo integration to evaluate the likelihood of joint models with multiple recurrent event types and markers.

Suggested Citation

  • M. H. Hof & J. Z. Musoro & R. B. Geskus & G. H. Struijk & I. J. M. ten Berge & A. H. Zwinderman, 2017. "Simulated maximum likelihood estimation in joint models for multiple longitudinal markers and recurrent events of multiple types, in the presence of a terminal event," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2756-2777, November.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:15:p:2756-2777
    DOI: 10.1080/02664763.2016.1262336
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1262336
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1262336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    2. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
    3. Gonzalez, Jorge & Tuerlinckx, Francis & De Boeck, Paul & Cools, Ronald, 2006. "Numerical integration in logistic-normal models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1535-1548, December.
    4. T. Baghfalaki & M. Ganjali & D. Berridge, 2014. "Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1934-1955, September.
    5. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    6. Lei Liu & Xuelin Huang, 2009. "Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 65-81, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    2. Melkamu Molla Ferede & Samuel Mwalili & Getachew Dagne & Simon Karanja & Workagegnehu Hailu & Mahmoud El-Morshedy & Afrah Al-Bossly, 2022. "A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    3. Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
    4. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    5. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    6. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    7. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    8. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    9. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    10. Giuliana Cortese & Thomas H. Scheike, 2022. "Efficient estimation of the marginal mean of recurrent events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1787-1821, November.
    11. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    12. Franco Peracchi & Claudio Rossetti, 2022. "A nonlinear dynamic factor model of health and medical treatment," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1046-1066, June.
    13. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    14. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    15. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    16. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    17. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    18. Sugata Sen Roy & Moumita Chatterjee, 2015. "Estimating the hazard functions of two alternately occurring recurrent events," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1547-1555, July.
    19. Michael Chen & Sanjay Mehrotra & Dávid Papp, 2015. "Scenario generation for stochastic optimization problems via the sparse grid method," Computational Optimization and Applications, Springer, vol. 62(3), pages 669-692, December.
    20. Michael J. Crowther & Keith R. Abrams & Paul C. Lambert, 2013. "Joint modeling of longitudinal and survival data," Stata Journal, StataCorp LP, vol. 13(1), pages 165-184, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:15:p:2756-2777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.