IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i12p2238-2250.html
   My bibliography  Save this article

Marshall–Olkin distribution: parameter estimation and application to cancer data

Author

Listed:
  • Yeşim Güney
  • Yetkin Tuaç
  • Olcay Arslan

Abstract

In this study, as alternatives to the maximum likelihood (ML) and the frequency estimators, we propose robust estimators for the parameters of Zipf and Marshall–Olkin Zipf distributions. A small simulation study is given to illustrate the performance of the proposed estimators. We apply the proposed estimators to a real data set from cancer research to illustrate the performance of the proposed estimators over the ML, moments and frequency estimators. We observe that the robust estimators have superiority over the frequency estimators based on classical sample mean.

Suggested Citation

  • Yeşim Güney & Yetkin Tuaç & Olcay Arslan, 2017. "Marshall–Olkin distribution: parameter estimation and application to cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2238-2250, September.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2238-2250
    DOI: 10.1080/02664763.2016.1252730
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1252730
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1252730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    3. Fredrik Liljeros & Christofer R. Edling & Luís A. Nunes Amaral & H. Eugene Stanley & Yvonne Åberg, 2001. "The web of human sexual contacts," Nature, Nature, vol. 411(6840), pages 907-908, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duarte-López, Ariel & Pérez-Casany, Marta & Valero, Jordi, 2020. "The Zipf–Poisson-stopped-sum distribution with an application for modeling the degree sequence of social networks," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claes Andersson & Koen Frenken & Alexander Hellervik, 2006. "A Complex Network Approach to Urban Growth," Environment and Planning A, , vol. 38(10), pages 1941-1964, October.
    2. J. Esquivel-Gómez & R. E. Balderas-Navarro & P. D. Arjona-Villicaña & P. Castillo-Castillo & O. Rico-Trejo & J. Acosta-Elias, 2017. "On the Emergence of Islands in Complex Networks," Complexity, Hindawi, vol. 2017, pages 1-10, January.
    3. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    4. Gamannossi degl’Innocenti, Duccio & Rablen, Matthew D., 2020. "Tax evasion on a social network," Journal of Economic Behavior & Organization, Elsevier, vol. 169(C), pages 79-91.
    5. Fu, Jingcheng & Wu, Jianliang & Liu, Chuanjian & Xu, Jin, 2016. "Leaders in communities of real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 428-441.
    6. Bryce Thomas & Raja Jurdak & Kun Zhao & Ian Atkinson, 2016. "Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-21, August.
    7. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    8. Laurie A. Schintler & Aura Reggiani & Rajendra Kulkarni & Peter Nijkamp, 2003. "Scale-Free Phenomena in Communication Networks: A Cross-Atlantic Comparison," ERSA conference papers ersa03p436, European Regional Science Association.
    9. Yang, Yang & Sun, Peng Gang & Hu, Xia & Li, Zhou Jun, 2014. "Closed walks for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 129-143.
    10. Georg Jäger & Christian Hofer & Marie Kapeller & Manfred Füllsack, 2017. "Hidden early-warning signals in scale-free networks," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
    11. Yao, Xin & Zhang, Chang-shui & Chen, Jin-wen & Li, Yan-da, 2005. "On the formation of degree and cluster-degree correlations in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 661-673.
    12. Bang, Youngsok & Lee, Dong-Joo & Bae, Yoon-Soo & Ahn, Jae-Hyeon, 2012. "Improving information security management: An analysis of ID–password usage and a new login vulnerability measure," International Journal of Information Management, Elsevier, vol. 32(5), pages 409-418.
    13. Raghav, Tanu & Jalan, Sarika, 2022. "Random matrix analysis of multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    14. Türker, İlker, 2018. "Generating clustered scale-free networks using Poisson based localization of edges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 72-85.
    15. Colman, E.R. & Rodgers, G.J., 2013. "Complex scale-free networks with tunable power-law exponent and clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5501-5510.
    16. repec:zbw:rwirep:0471 is not listed on IDEAS
    17. Pablo Medina & Natalia Ariza & Pablo Navas & Fernando Rojas & Gina Parody & Juan Alejandro Valdivia & Roberto Zarama & Juan Felipe Penagos, 2018. "An Unintended Effect of Financing the University Education of the Most Brilliant and Poorest Colombian Students: The Case of the Intervention of the Ser Pilo Paga Program," Complexity, Hindawi, vol. 2018, pages 1-9, December.
    18. Anna Klabunde, 2014. "Computational Economic Modeling of Migration," Ruhr Economic Papers 0471, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    19. Polovnikov, Kirill & Kazakov, Vlad & Syntulsky, Sergey, 2020. "Core–periphery organization of the cryptocurrency market inferred by the modularity operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    21. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2238-2250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.