IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7157943.html
   My bibliography  Save this article

On the Emergence of Islands in Complex Networks

Author

Listed:
  • J. Esquivel-Gómez
  • R. E. Balderas-Navarro
  • P. D. Arjona-Villicaña
  • P. Castillo-Castillo
  • O. Rico-Trejo
  • J. Acosta-Elias

Abstract

Most growth models for complex networks consider networks comprising a single connected block or island, which contains all the nodes in the network. However, it has been demonstrated that some large complex networks have more than one island, with an island size distribution ( ) obeying a power-law function . This paper introduces a growth model that considers the emergence of islands as the network grows. The proposed model addresses the following two features: (i) the probability that a new island is generated decreases as the network grows and (ii) new islands are created with a constant probability at any stage of the growth. In the first case, the model produces an island size distribution that decays as a power-law with a fixed exponent and in-degree distribution that decays as a power-law with . When the second case is considered, the model describes island size and in-degree distributions that decay as a power-law with and , respectively.

Suggested Citation

  • J. Esquivel-Gómez & R. E. Balderas-Navarro & P. D. Arjona-Villicaña & P. Castillo-Castillo & O. Rico-Trejo & J. Acosta-Elias, 2017. "On the Emergence of Islands in Complex Networks," Complexity, Hindawi, vol. 2017, pages 1-10, January.
  • Handle: RePEc:hin:complx:7157943
    DOI: 10.1155/2017/7157943
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/7157943.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/7157943.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/7157943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu, Xin-Jian & Zhang, Xun & Mendes, J.F.F., 2009. "Growing community networks with local events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1273-1278.
    2. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    3. J. Esquivel-Gómez & R. E. Balderas-Navarro & Edgardo Ugalde & J. Acosta-Elías, 2015. "On the growth of directed complex networks with preferential attachment: Effect upon the prohibition of multiple links," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(06), pages 1-12.
    4. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    5. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claes Andersson & Koen Frenken & Alexander Hellervik, 2006. "A Complex Network Approach to Urban Growth," Environment and Planning A, , vol. 38(10), pages 1941-1964, October.
    2. Yao, Xin & Zhang, Chang-shui & Chen, Jin-wen & Li, Yan-da, 2005. "On the formation of degree and cluster-degree correlations in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 661-673.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    5. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    6. Yeşim Güney & Yetkin Tuaç & Olcay Arslan, 2017. "Marshall–Olkin distribution: parameter estimation and application to cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2238-2250, September.
    7. Gamannossi degl’Innocenti, Duccio & Rablen, Matthew D., 2020. "Tax evasion on a social network," Journal of Economic Behavior & Organization, Elsevier, vol. 169(C), pages 79-91.
    8. Zhang, Zhongzhi & Rong, Lili & Comellas, Francesc, 2006. "High-dimensional random Apollonian networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 610-618.
    9. Daniel Straulino & Mattie Landman & Neave O'Clery, 2020. "A bi-directional approach to comparing the modular structure of networks," Papers 2010.06568, arXiv.org.
    10. Rendón de la Torre, Stephanie & Kalda, Jaan & Kitt, Robert & Engelbrecht, Jüri, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 18-27.
    11. Fu, Jingcheng & Wu, Jianliang & Liu, Chuanjian & Xu, Jin, 2016. "Leaders in communities of real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 428-441.
    12. Zheng, Xiaolong & Zeng, Daniel & Li, Huiqian & Wang, Feiyue, 2008. "Analyzing open-source software systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6190-6200.
    13. Heath Henderson & Arnob Alam, 2022. "The structure of risk-sharing networks," Empirical Economics, Springer, vol. 62(2), pages 853-886, February.
    14. Bryce Thomas & Raja Jurdak & Kun Zhao & Ian Atkinson, 2016. "Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-21, August.
    15. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    16. S Konini & E J Janse van Rensburg, 2017. "Mean field analysis of algorithms for scale-free networks in molecular biology," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-34, December.
    17. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    18. Laurie A. Schintler & Aura Reggiani & Rajendra Kulkarni & Peter Nijkamp, 2003. "Scale-Free Phenomena in Communication Networks: A Cross-Atlantic Comparison," ERSA conference papers ersa03p436, European Regional Science Association.
    19. Yang, Yang & Sun, Peng Gang & Hu, Xia & Li, Zhou Jun, 2014. "Closed walks for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 129-143.
    20. Chen, Qinghua & Shi, Dinghua, 2006. "Markov chains theory for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 121-133.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7157943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.