IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i11p2053-2064.html
   My bibliography  Save this article

Goodness-of-fit tests of generalized linear mixed models for repeated ordinal responses

Author

Listed:
  • Kuo-Chin Lin
  • Yi-Ju Chen

Abstract

Categorical longitudinal data are frequently applied in a variety of fields, and are commonly fitted by generalized linear mixed models (GLMMs) and generalized estimating equations models. The cumulative logit is one of the useful link functions to deal with the problem involving repeated ordinal responses. To check the adequacy of the GLMMs with cumulative logit link function, two goodness-of-fit tests constructed by the unweighted sum of squared model residuals using numerical integration and bootstrap resampling technique are proposed. The empirical type I error rates and powers of the proposed tests are examined by simulation studies. The ordinal longitudinal studies are utilized to illustrate the application of the two proposed tests.

Suggested Citation

  • Kuo-Chin Lin & Yi-Ju Chen, 2016. "Goodness-of-fit tests of generalized linear mixed models for repeated ordinal responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2053-2064, August.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:11:p:2053-2064
    DOI: 10.1080/02664763.2015.1126568
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1126568
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1126568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhiying Pan & D. Y. Lin, 2005. "Goodness-of-Fit Methods for Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 61(4), pages 1000-1009, December.
    2. Lin, Kuo-Chin, 2010. "Goodness-of-fit tests for modeling longitudinal ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1872-1880, July.
    3. Lin, Kuo-Chin & Chen, Yi-Ju, 2015. "Detecting misspecification in the random-effects structure of cumulative logit models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 126-133.
    4. D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, March.
    5. Wei Pan, 2002. "Goodness‐of‐fit Tests for GEE with Correlated Binary Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 101-110, March.
    6. Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
    7. Jianxin Pan & Robin Thompson, 2003. "Gauss-Hermite Quadrature Approximation for Estimation in Generalised Linear Mixed Models," Computational Statistics, Springer, vol. 18(1), pages 57-78, March.
    8. Alonso, A. & Litière, S. & Molenberghs, G., 2008. "A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4474-4486, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Yu & Xianzheng Huang, 2017. "Random-intercept misspecification in generalized linear mixed models for binary responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 333-359, August.
    2. Shun Yu & Xianzheng Huang, 2019. "Link misspecification in generalized linear mixed models with a random intercept for binary responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 827-843, September.
    3. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Cui, Li-E & Zhao, Puying & Tang, Niansheng, 2022. "Generalized empirical likelihood for nonsmooth estimating equations with missing data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Gonzales Manteiga, Wenceslao & Maria Dolores, Martinez Miranda & Van Keilegom, Ingrid, 2012. "Goodness-of-fit Test in Parametric Mixed-Effects Models based on the Estimation of the Error Distribution," LIDAM Discussion Papers ISBA 2012022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Jakob Peterlin & Nataša Kejžar & Rok Blagus, 2023. "Correct specification of design matrices in linear mixed effects models: tests with graphical representation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 184-210, March.
    7. Reza Drikvandi & Geert Verbeke & Geert Molenberghs, 2017. "Diagnosing misspecification of the random-effects distribution in mixed models," Biometrics, The International Biometric Society, vol. 73(1), pages 63-71, March.
    8. Lin, Kuo-Chin, 2010. "Goodness-of-fit tests for modeling longitudinal ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1872-1880, July.
    9. B. N. Sánchez & E. A. Houseman & L. M. Ryan, 2009. "Residual-Based Diagnostics for Structural Equation Models," Biometrics, The International Biometric Society, vol. 65(1), pages 104-115, March.
    10. Lin, Hui-Yi & Myers, Leann, 2006. "Power and Type I error rates of goodness-of-fit statistics for binomial generalized estimating equations (GEE) models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3432-3448, August.
    11. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    12. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    13. Melo, Tatiane F.N. & Vasconcellos, Klaus L.P. & Lemonte, Artur J., 2009. "Some restriction tests in a new class of regression models for proportions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3972-3979, October.
    14. E. Andres Houseman & Brent Coull & Louise Ryan, 2004. "A Functional-Based Distribution Diagnostic for a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1018, Berkeley Electronic Press.
    15. Tourani-Farani, Fahimeh & Kazemi, Iraj, 2022. "Transformed mixed-effects modeling of correlated bounded and positive data with a novel multivariate generalized Johnson distribution," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    16. Tianxi Cai & Lu Tian & L. J. Wei, 2004. "Semi-parametric Box-Cox Power Transformation Models for Censored Survival Observations," Harvard University Biostatistics Working Paper Series 1006, Berkeley Electronic Press.
    17. Lizandra C. Fabio & Francisco J. A. Cysneiros & Gilberto A. Paula & Jalmar M. F. Carrasco, 2022. "Hierarchical and multivariate regression models to fit correlated asymmetric positive continuous outcomes," Computational Statistics, Springer, vol. 37(3), pages 1435-1459, July.
    18. Broström, Göran & Holmberg, Henrik, 2011. "Generalized linear models with clustered data: Fixed and random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3123-3134, December.
    19. Stute, W. & Presedo Quindimil, M. & González Manteiga, W. & Koul, H.L., 2006. "Model checks of higher order time series," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1385-1396, July.
    20. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:11:p:2053-2064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.