IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v29y2002i1p101-110.html
   My bibliography  Save this article

Goodness‐of‐fit Tests for GEE with Correlated Binary Data

Author

Listed:
  • WEI PAN

Abstract

The marginal logistic regression, in combination with GEE, is an increasingly important method in dealing with correlated binary data. As for independent binary data, when the number of possible combinations of the covariate values in a logistic regression model is much larger than the sample size, such as when the logistic model contains at least one continuous covariate, many existing chi‐square goodness‐of‐fit tests either are not applicable or have some serious drawbacks. In this paper two residual based normal goodness‐of‐fit test statistics are proposed: the Pearson chi‐square and an unweighted sum of residual squares. Easy‐to‐calculate approximations to the mean and variance of either statistic are also given. Their performance, in terms of both size and power, was satisfactory in our simulation studies. For illustration we apply them to a real data set.

Suggested Citation

  • Wei Pan, 2002. "Goodness‐of‐fit Tests for GEE with Correlated Binary Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 101-110, March.
  • Handle: RePEc:bla:scjsta:v:29:y:2002:i:1:p:101-110
    DOI: 10.1111/1467-9469.00091
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00091
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. C. Pardo & R. Alonso, 2012. "A generalized Q--Q plot for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2349-2362, July.
    2. Lan Wang & Annie Qu, 2009. "Consistent model selection and data‐driven smooth tests for longitudinal data in the estimating equations approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 177-190, January.
    3. Kuo-Chin Lin & Yi-Ju Chen, 2016. "Goodness-of-fit tests of generalized linear mixed models for repeated ordinal responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2053-2064, August.
    4. Lin, Hui-Yi & Myers, Leann, 2006. "Power and Type I error rates of goodness-of-fit statistics for binomial generalized estimating equations (GEE) models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3432-3448, August.
    5. Andreas Blöchlinger & Markus Leippold, 2011. "A New Goodness-of-Fit Test for Event Forecasting and Its Application to Credit Defaults," Management Science, INFORMS, vol. 57(3), pages 487-505, March.
    6. Lin, Kuo-Chin, 2010. "Goodness-of-fit tests for modeling longitudinal ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1872-1880, July.
    7. Chung-Wei Shen & Yi-Hau Chen, 2012. "Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness," Biometrics, The International Biometric Society, vol. 68(4), pages 1046-1054, December.
    8. Shinpei Imori, 2015. "Model Selection Criterion Based on the Multivariate Quasi-Likelihood for Generalized Estimating Equations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1214-1224, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:29:y:2002:i:1:p:101-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.