IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i5p938-955.html
   My bibliography  Save this article

Cluster-based multivariate outlier identification and re-weighted regression in linear models

Author

Listed:
  • Ekele Alih
  • Hong Choon Ong

Abstract

A cluster methodology, motivated by a robust similarity matrix is proposed for identifying likely multivariate outlier structure and to estimate weighted least-square ( WLS ) regression parameters in linear models. The proposed method is an agglomeration of procedures that begins from clustering the n -observations through a test of 'no-outlier hypothesis' ( TONH ) to a weighted least-square regression estimation. The cluster phase partition the n -observations into h -set called main cluster and a minor cluster of size n - h . A robust distance emerge from the main cluster upon which a test of no outlier hypothesis' is conducted. An initial WLS regression estimation is computed from the robust distance obtained from the main cluster. Until convergence, a re-weighted least-squares ( RLS ) regression estimate is updated with weights based on the normalized residuals. The proposed procedure blends an agglomerative hierarchical cluster analysis of a complete linkage through the TONH to the Re-weighted regression estimation phase. Hence, we propose to call it cluster-based re-weighted regression ( CBRR ). The CBRR is compared with three existing procedures using two data sets known to exhibit masking and swamping. The performance of CBRR is further examined through simulation experiment. The results obtained from the data set illustration and the Monte Carlo study shows that the CBRR is effective in detecting multivariate outliers where other methods are susceptible to it. The CBRR does not require enormous computation and is substantially not susceptible to masking and swamping.

Suggested Citation

  • Ekele Alih & Hong Choon Ong, 2015. "Cluster-based multivariate outlier identification and re-weighted regression in linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 938-955, May.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:5:p:938-955
    DOI: 10.1080/02664763.2014.993366
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.993366
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.993366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petra Bůžková, 2013. "Linear Regression in Genetic Association Studies," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    2. Xinhui Wang & Marinus J C Eijkemans & Jacco Wallinga & Giske Biesbroek & Krzysztof Trzciński & Elisabeth A M Sanders & Debby Bogaert, 2012. "Multivariate Approach for Studying Interactions between Environmental Variables and Microbial Communities," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    3. Glen A Satten & Andrew S Allen & Morna Ikeda & Jennifer G Mulle & Stephen T Warren, 2014. "Robust Regression Analysis of Copy Number Variation Data based on a Univariate Score," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    4. A. H. M. Rahmatullah Imon, 2003. "Residuals from deletion in added variable plots," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(7), pages 827-841.
    5. Billor, Nedret & Hadi, Ali S. & Velleman, Paul F., 2000. "BACON: blocked adaptive computationally efficient outlier nominators," Computational Statistics & Data Analysis, Elsevier, vol. 34(3), pages 279-298, September.
    6. Tsair-Fwu Lee & Pei-Ju Chao & Hui-Min Ting & Liyun Chang & Yu-Jie Huang & Jia-Ming Wu & Hung-Yu Wang & Mong-Fong Horng & Chun-Ming Chang & Jen-Hong Lan & Ya-Yu Huang & Fu-Min Fang & Stephen Wan Leung, 2014. "Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    7. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    8. Hong Li & Wei Ning, 2012. "Multiple comparisons with a control under heteroscedasticity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(10), pages 2275-2283, June.
    9. Olive, David J., 2005. "Two simple resistant regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 809-819, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekele Alih & Hong Choon Ong, 2015. "An outlier-resistant test for heteroscedasticity in linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1617-1634, August.
    2. Catherine Fuss & Angelos Theodorakopoulos, 2018. "Compositional Changes in Aggregate Productivity in an Era of Globalisation and Financial Crisis," Working Papers of VIVES - Research Centre for Regional Economics 627696, KU Leuven, Faculty of Economics and Business (FEB), VIVES - Research Centre for Regional Economics.
    3. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    4. L. Pitsoulis & G. Zioutas, 2010. "A fast algorithm for robust regression with penalised trimmed squares," Computational Statistics, Springer, vol. 25(4), pages 663-689, December.
    5. Cristian BARRA & Roberto ZOTTI, 2019. "Bank Performance, Financial Stability And Market Concentration: Evidence From Cooperative And Non‐Cooperative Banks," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 90(1), pages 103-139, March.
    6. Hong Choon Ong & Ekele Alih, 2015. "A Control Chart Based on Cluster-Regression Adjustment for Retrospective Monitoring of Individual Characteristics," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-30, April.
    7. Lin, Weiqiang, 2014. "The politics of flying: aeromobile frictions in a mobile city," Journal of Transport Geography, Elsevier, vol. 38(C), pages 92-99.
    8. Stefani, Gianluca & Gadanakis, Yiorgos & Lombardi, Ginevra Virginia & Tiberti, Marco, 2017. "The impact of financial leverage on farms capacity to react in market shocks," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261156, European Association of Agricultural Economists.
    9. Peter Nemec, 2024. "Contesting the public works domain: examining the factors affecting presence and success of SMES in public procurement," Empirical Economics, Springer, vol. 67(5), pages 2135-2173, November.
    10. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    11. A.A.M. Nurunnabi & M. Nasser & A.H.M.R. Imon, 2016. "Identification and classification of multiple outliers, high leverage points and influential observations in linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 509-525, March.
    12. Jiří Schwarz & Martin Pospíšil, 2018. "Bankruptcy, Investment, and Financial Constraints: Evidence from the Czech Republic," Eastern European Economics, Taylor & Francis Journals, vol. 56(2), pages 99-121, March.
    13. AMENDOLA, Adalgiso & BARRA, Cristian & BOCCIA, Marinella & PAPACCIO, Anna, 2018. "Market Structure and Financial Stability: Theory and Evidence," CELPE Discussion Papers 156, CELPE - CEnter for Labor and Political Economics, University of Salerno, Italy.
    14. Bedri Kamil Onur Tas, 2024. "A machine learning approach to detect collusion in public procurement with limited information," Journal of Computational Social Science, Springer, vol. 7(2), pages 1913-1935, October.
    15. Fratianni, Michele & Marchionne, Francesco, 2017. "Bank asset reallocation and sovereign debt," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 47(C), pages 15-32.
    16. Mario Hasler, 2016. "Heteroscedasticity: multiple degrees of freedom vs. sandwich estimation," Statistical Papers, Springer, vol. 57(1), pages 55-68, March.
    17. José Ignacio Giménez-Nadal & José Alberto Molina & Jorge Velilla, 2024. "Intermediate activities while commuting," Review of Economics of the Household, Springer, vol. 22(3), pages 1185-1220, September.
    18. Sylvain Weber, 2010. "bacon: An effective way to detect outliers in multivariate data using Stata (and Mata)," Stata Journal, StataCorp LP, vol. 10(3), pages 331-338, September.
    19. Mele, Antonio & Paglialunga, Elena & Sforna, Giorgia, 2021. "Climate cooperation from Kyoto to Paris: What can be learnt from the CDM experience?," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    20. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:5:p:938-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.