IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i12p2715-2733.html
   My bibliography  Save this article

Robust confidence intervals for trend estimation in meta-analysis with publication bias

Author

Listed:
  • H. Lu
  • P. Yin
  • R.X. Yue
  • J.Q. Shi

Abstract

Confidence interval (CI) is very useful for trend estimation in meta-analysis. It provides a type of interval estimate of the regression slope as well as an indicator of the reliability of the estimate. Thus a precise calculation of confidence interval at an expected level is important. It is always difficult to explicitly quantify the CIs when there is publication bias in meta-analysis. Various CIs have been proposed, including the most widely used DerSimonian-Laird CI and the recently proposed Henmi-Copas CI. The latter provides a robust solution when there are non-ignorable missing data due to publication bias. In this paper we extended the idea into meta-analysis for trend estimation. We applied the method in different scenarios and showed that this type of CI is more robust than the others.

Suggested Citation

  • H. Lu & P. Yin & R.X. Yue & J.Q. Shi, 2015. "Robust confidence intervals for trend estimation in meta-analysis with publication bias," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2715-2733, December.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:12:p:2715-2733
    DOI: 10.1080/02664763.2015.1048672
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1048672
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1048672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    2. John Copas & Dan Jackson, 2004. "A Bound for Publication Bias Based on the Fraction of Unpublished Studies," Biometrics, The International Biometric Society, vol. 60(1), pages 146-153, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence C. McCandless & Sylvia Richardson & Nicky Best, 2012. "Adjustment for Missing Confounders Using External Validation Data and Propensity Scores," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 40-51, March.
    2. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    3. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    4. Carlos Díaz-Venegas, 2014. "Identifying the Confounders of Marginalization and Mortality in Mexico, 2003–2007," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 118(2), pages 851-875, September.
    5. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    6. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    7. McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.
    8. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    9. K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.
    10. Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
    11. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    12. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    13. Qi Zhou & Yoo-Mi Chin & James D. Stamey & Joon Jin Song, 2020. "Bayesian sensitivity analysis to unmeasured confounding for misclassified data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 577-596, December.
    14. de Luna, Xavier & Lundin, Mathias, 2009. "Sensitivity analysis of the unconfoundedness assumption in observational studies," Working Paper Series 2009:12, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    15. Leah Comment & Brent A. Coull & Corwin Zigler & Linda Valeri, 2022. "Bayesian data fusion: Probabilistic sensitivity analysis for unmeasured confounding using informative priors based on secondary data," Biometrics, The International Biometric Society, vol. 78(2), pages 730-741, June.
    16. N. J. Welton & A. E. Ades & J. B. Carlin & D. G. Altman & J. A. C. Sterne, 2009. "Models for potentially biased evidence in meta‐analysis using empirically based priors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 119-136, January.
    17. Enrique A. Navarro-Camba & Jaume Segura-García & Claudio Gomez-Perretta, 2018. "Exposure to 50 Hz Magnetic Fields in Homes and Areas Surrounding Urban Transformer Stations in Silla (Spain): Environmental Impact Assessment," Sustainability, MDPI, vol. 10(8), pages 1-11, July.
    18. P. Gustafson & L. C. McCandless & A. R. Levy & S. Richardson, 2010. "Simplified Bayesian Sensitivity Analysis for Mismeasured and Unobserved Confounders," Biometrics, The International Biometric Society, vol. 66(4), pages 1129-1137, December.
    19. Masayuki Henmi & John B. Copas & Shinto Eguchi, 2007. "Confidence Intervals and P-Values for Meta-Analysis with Publication Bias," Biometrics, The International Biometric Society, vol. 63(2), pages 475-482, June.
    20. Leeka Kheifets & Jack D. Sahl & Riti Shimkhada & Mike H. Repacholi, 2005. "Developing Policy in the Face of Scientific Uncertainty: Interpreting 0.3 μT or 0.4 μT Cutpoints from EMF Epidemiologic Studies," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 927-935, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:12:p:2715-2733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.