IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0030711.html
   My bibliography  Save this article

Routine Antenatal Anti-D Prophylaxis in Women Who Are Rh(D) Negative: Meta-Analyses Adjusted for Differences in Study Design and Quality

Author

Listed:
  • Rebecca M Turner
  • Myfanwy Lloyd-Jones
  • Dilly O C Anumba
  • Gordon C S Smith
  • David J Spiegelhalter
  • Hazel Squires
  • John W Stevens
  • Michael J Sweeting
  • Stanislaw J Urbaniak
  • Robert Webster
  • Simon G Thompson

Abstract

Background: To estimate the effectiveness of routine antenatal anti-D prophylaxis for preventing sensitisation in pregnant Rhesus negative women, and to explore whether this depends on the treatment regimen adopted. Methods: Ten studies identified in a previous systematic literature search were included. Potential sources of bias were systematically identified using bias checklists, and their impact and uncertainty were quantified using expert opinion. Study results were adjusted for biases and combined, first in a random-effects meta-analysis and then in a random-effects meta-regression analysis. Results: In a conventional meta-analysis, the pooled odds ratio for sensitisation was estimated as 0.25 (95% CI 0.18, 0.36), comparing routine antenatal anti-D prophylaxis to control, with some heterogeneity (I2 = 19%). However, this naïve analysis ignores substantial differences in study quality and design. After adjusting for these, the pooled odds ratio for sensitisation was estimated as 0.31 (95% CI 0.17, 0.56), with no evidence of heterogeneity (I2 = 0%). A meta-regression analysis was performed, which used the data available from the ten anti-D prophylaxis studies to inform us about the relative effectiveness of three licensed treatments. This gave an 83% probability that a dose of 1250 IU at 28 and 34 weeks is most effective and a 76% probability that a single dose of 1500 IU at 28–30 weeks is least effective. Conclusion: There is strong evidence for the effectiveness of routine antenatal anti-D prophylaxis for prevention of sensitisation, in support of the policy of offering routine prophylaxis to all non-sensitised pregnant Rhesus negative women. All three licensed dose regimens are expected to be effective.

Suggested Citation

  • Rebecca M Turner & Myfanwy Lloyd-Jones & Dilly O C Anumba & Gordon C S Smith & David J Spiegelhalter & Hazel Squires & John W Stevens & Michael J Sweeting & Stanislaw J Urbaniak & Robert Webster & Sim, 2012. "Routine Antenatal Anti-D Prophylaxis in Women Who Are Rh(D) Negative: Meta-Analyses Adjusted for Differences in Study Design and Quality," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-10, February.
  • Handle: RePEc:plo:pone00:0030711
    DOI: 10.1371/journal.pone.0030711
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030711
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0030711&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0030711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    2. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    3. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.
    2. K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.
    3. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    4. Desiree C Wilks & Stephen J Sharp & Ulf Ekelund & Simon G Thompson & Adrian P Mander & Rebecca M Turner & Susan A Jebb & Anna Karin Lindroos, 2011. "Objectively Measured Physical Activity and Fat Mass in Children: A Bias-Adjusted Meta-Analysis of Prospective Studies," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-8, February.
    5. Brian H. MacGillivray, 2019. "Null Hypothesis Testing ≠ Scientific Inference: A Critique of the Shaky Premise at the Heart of the Science and Values Debate, and a Defense of Value‐Neutral Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1520-1532, July.
    6. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    7. Lawrence C. McCandless & Sylvia Richardson & Nicky Best, 2012. "Adjustment for Missing Confounders Using External Validation Data and Propensity Scores," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 40-51, March.
    8. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    9. Avner Engel & Shalom Shachar, 2006. "Measuring and optimizing systems' quality costs and project duration," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 259-280, September.
    10. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    11. Atanasov, Pavel & Witkowski, Jens & Ungar, Lyle & Mellers, Barbara & Tetlock, Philip, 2020. "Small steps to accuracy: Incremental belief updaters are better forecasters," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 19-35.
    12. Carlos Díaz-Venegas, 2014. "Identifying the Confounders of Marginalization and Mortality in Mexico, 2003–2007," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 118(2), pages 851-875, September.
    13. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    14. Franz Dietrich & Christian List, 2017. "Probabilistic opinion pooling generalized. Part one: general agendas," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 747-786, April.
    15. repec:cup:judgdm:v:13:y:2018:i:6:p:607-621 is not listed on IDEAS
    16. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    17. Chiara Franzoni & Paula Stephan & Reinhilde Veugelers, 2022. "Funding Risky Research," Entrepreneurship and Innovation Policy and the Economy, University of Chicago Press, vol. 1(1), pages 103-133.
    18. Robert F. Bordley, 2009. "Combining the Opinions of Experts Who Partition Events Differently," Decision Analysis, INFORMS, vol. 6(1), pages 38-46, March.
    19. Jason R. W. Merrick & J. Rene van Dorp & Jack Harrald & Thomas Mazzuchi & John E. Spahn & Martha Grabowski, 2000. "A systems approach to managing oil transportation risk in Prince William Sound," Systems Engineering, John Wiley & Sons, vol. 3(3), pages 128-142.
    20. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    21. Donnacha Bolger & Brett Houlding, 2016. "Reliability updating in linear opinion pooling for multiple decision makers," Journal of Risk and Reliability, , vol. 230(3), pages 309-322, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0030711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.