IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v172y2009i3p615-637.html
   My bibliography  Save this article

Using Bayesian graphical models to model biases in observational studies and to combine multiple sources of data: application to low birth weight and water disinfection by‐products

Author

Listed:
  • Nuoo‐Ting Molitor
  • Nicky Best
  • Chris Jackson
  • Sylvia Richardson

Abstract

Summary. Data in the social, behavioural and health sciences frequently come from observational studies instead of controlled experiments. In addition to random errors, observational data typically contain additional sources of uncertainty such as missing values, unmeasured confounders and selection biases. Also, the research question is often different from that which a particular source of data was designed to answer, and so not all relevant variables are measured. As a result, multiple sources of data are often necessary to identify the biases and to inform about different aspects of the research question. Bayesian graphical models provide a coherent way to connect a series of local submodels, based on different data sets, into a global unified analysis. We present a unified modelling framework that will account for multiple biases simultaneously and give more accurate parameter estimates than standard approaches. We illustrate our approach by analysing data from a study of water disinfection by‐products and adverse birth outcomes in the UK.

Suggested Citation

  • Nuoo‐Ting Molitor & Nicky Best & Chris Jackson & Sylvia Richardson, 2009. "Using Bayesian graphical models to model biases in observational studies and to combine multiple sources of data: application to low birth weight and water disinfection by‐products," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 615-637, June.
  • Handle: RePEc:bla:jorssa:v:172:y:2009:i:3:p:615-637
    DOI: 10.1111/j.1467-985X.2008.00582.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2008.00582.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2008.00582.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    2. Paul R. Rosenbaum, 2004. "Design sensitivity in observational studies," Biometrika, Biometrika Trust, vol. 91(1), pages 153-164, March.
    3. Jon Wakefield, 2003. "Sensitivity Analyses for Ecological Regression," Biometrics, The International Biometric Society, vol. 59(1), pages 9-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence C. McCandless & Sylvia Richardson & Nicky Best, 2012. "Adjustment for Missing Confounders Using External Validation Data and Propensity Scores," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 40-51, March.
    2. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    3. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    4. Carlos Díaz-Venegas, 2014. "Identifying the Confounders of Marginalization and Mortality in Mexico, 2003–2007," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 118(2), pages 851-875, September.
    5. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    6. McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.
    7. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    8. Frida Skog, 2019. "Sibling Effects on Adult Earnings Among Poor and Wealthy Children Evidence from Sweden," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 12(3), pages 917-942, June.
    9. K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.
    10. Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
    11. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    12. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    13. Jerzy Michalek, 2012. "Counterfactual impact evaluation of EU rural development programmes - Propensity Score Matching methodology applied to selected EU Member States. Volume 2: A regional approach," JRC Research Reports JRC72060, Joint Research Centre.
    14. Qi Zhou & Yoo-Mi Chin & James D. Stamey & Joon Jin Song, 2020. "Bayesian sensitivity analysis to unmeasured confounding for misclassified data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 577-596, December.
    15. de Luna, Xavier & Lundin, Mathias, 2009. "Sensitivity analysis of the unconfoundedness assumption in observational studies," Working Paper Series 2009:12, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    16. Leah Comment & Brent A. Coull & Corwin Zigler & Linda Valeri, 2022. "Bayesian data fusion: Probabilistic sensitivity analysis for unmeasured confounding using informative priors based on secondary data," Biometrics, The International Biometric Society, vol. 78(2), pages 730-741, June.
    17. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    18. N. J. Welton & A. E. Ades & J. B. Carlin & D. G. Altman & J. A. C. Sterne, 2009. "Models for potentially biased evidence in meta‐analysis using empirically based priors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 119-136, January.
    19. Enrique A. Navarro-Camba & Jaume Segura-García & Claudio Gomez-Perretta, 2018. "Exposure to 50 Hz Magnetic Fields in Homes and Areas Surrounding Urban Transformer Stations in Silla (Spain): Environmental Impact Assessment," Sustainability, MDPI, vol. 10(8), pages 1-11, July.
    20. Kwonsang Lee & Dylan S. Small & Paul R. Rosenbaum, 2018. "A powerful approach to the study of moderate effect modification in observational studies," Biometrics, The International Biometric Society, vol. 74(4), pages 1161-1170, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:3:p:615-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.