Author
Listed:
- Justin R Ortiz
- Hong Zhou
- David K Shay
- Kathleen M Neuzil
- Ashley L Fowlkes
- Christopher H Goss
Abstract
Background: Google Flu Trends was developed to estimate US influenza-like illness (ILI) rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections. Methods and Findings: Influenza activity data from 2003–04 through 2007–08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance), and US Influenza Virologic Surveillance System (CDC Virus Surveillance). Pearson's correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson's correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79). The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89). Most of the outlier observations in both comparisons were from the 2003–04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87) or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90). Conclusions: This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003–04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior.
Suggested Citation
Justin R Ortiz & Hong Zhou & David K Shay & Kathleen M Neuzil & Ashley L Fowlkes & Christopher H Goss, 2011.
"Monitoring Influenza Activity in the United States: A Comparison of Traditional Surveillance Systems with Google Flu Trends,"
PLOS ONE, Public Library of Science, vol. 6(4), pages 1-9, April.
Handle:
RePEc:plo:pone00:0018687
DOI: 10.1371/journal.pone.0018687
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.