IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i5p899-911.html
   My bibliography  Save this article

A step-by-step algorithm for combining diagnostic tests

Author

Listed:
  • Luis Mariano Esteban
  • Gerardo Sanz
  • Angel Borque

Abstract

Combining data of several tests or markers for the classification of patients according to their health status for assigning better treatments is a major issue in the study of diseases such as cancer. In order to tackle this problem, several approaches have been proposed in the literature. In this paper, a step-by-step algorithm for estimating the parameters of a linear classifier that combines several measures is considered. The optimization criterion is to maximize the area under the receiver operating characteristic curve. The algorithm is applied to different simulated data sets and its performance is evaluated. Finally, the method is illustrated with a prostate cancer staging database.

Suggested Citation

  • Luis Mariano Esteban & Gerardo Sanz & Angel Borque, 2011. "A step-by-step algorithm for combining diagnostic tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 899-911, February.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:899-911
    DOI: 10.1080/02664761003692373
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664761003692373
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664761003692373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuangge Ma & Jian Huang, 2007. "Combining Multiple Markers for Classification Using ROC," Biometrics, The International Biometric Society, vol. 63(3), pages 751-757, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocío Aznar-Gimeno & Luis M. Esteban & Gerardo Sanz & Rafael del-Hoyo-Alonso & Ricardo Savirón-Cornudella, 2021. "Incorporating a New Summary Statistic into the Min–Max Approach: A Min–Max–Median, Min–Max–IQR Combination of Biomarkers for Maximising the Youden Index," Mathematics, MDPI, vol. 9(19), pages 1-17, October.
    2. Rocío Aznar-Gimeno & Luis M. Esteban & Rafael del-Hoyo-Alonso & Ángel Borque-Fernando & Gerardo Sanz, 2022. "A Stepwise Algorithm for Linearly Combining Biomarkers under Youden Index Maximization," Mathematics, MDPI, vol. 10(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    2. Xin Huang & Gengsheng Qin & Yixin Fang, 2011. "Optimal Combinations of Diagnostic Tests Based on AUC," Biometrics, The International Biometric Society, vol. 67(2), pages 568-576, June.
    3. Carol Y. Lin & Lance A. Waller & Robert H. Lyles, 2012. "The likelihood approach for the comparison of medical diagnostic system with multiple binary tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1437-1454, December.
    4. Yuanjia Wang & Huaihou Chen & Runze Li & Naihua Duan & Roberto Lewis-Fernández, 2011. "Prediction-Based Structured Variable Selection through the Receiver Operating Characteristic Curves," Biometrics, The International Biometric Society, vol. 67(3), pages 896-905, September.
    5. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
    6. Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
    7. Sudesh Pundir & R. Amala, 2015. "Detecting diagnostic accuracy of two biomarkers through a bivariate log-normal ROC curve," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2671-2685, December.
    8. Hung Hung & Chin‐Tsang Chiang, 2010. "Optimal Composite Markers for Time‐Dependent Receiver Operating Characteristic Curves with Censored Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 664-679, December.
    9. Chiang, Chin-Tsang & Chiu, Chih-Heng, 2012. "Nonparametric and semiparametric optimal transformations of markers," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 124-141, January.
    10. Shao‐Hsuan Wang & Chin‐Tsang Chiang, 2020. "Concordance‐based estimation approaches for the optimal sufficient dimension reduction score," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 662-689, September.
    11. Xiao Song & Shuangge Ma, 2010. "Penalised variable selection with U-estimates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 499-515.
    12. Pablo Gonzalez Ginestet & Ales Kotalik & David M. Vock & Julian Wolfson & Erin E. Gabriel, 2021. "Stacked inverse probability of censoring weighted bagging: A case study in the InfCareHIV Register," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 51-65, January.
    13. Yanqing Wang & Ying‐Qi Zhao & Yingye Zheng, 2020. "Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint," Biometrics, The International Biometric Society, vol. 76(3), pages 853-862, September.
    14. Carranza, Juan Pablo & Piumetto, Mario Andrés & Lucca, Carlos María & Da Silva, Everton, 2022. "Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values," Land Use Policy, Elsevier, vol. 119(C).
    15. Binbing Yu, 2009. "Approximating the risk score for disease diagnosis using MARS," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 769-778.
    16. Rocío Aznar-Gimeno & Luis M. Esteban & Gerardo Sanz & Rafael del-Hoyo-Alonso & Ricardo Savirón-Cornudella, 2021. "Incorporating a New Summary Statistic into the Min–Max Approach: A Min–Max–Median, Min–Max–IQR Combination of Biomarkers for Maximising the Youden Index," Mathematics, MDPI, vol. 9(19), pages 1-17, October.
    17. Heikki Kauppi, 2016. "The Generalized Receiver Operating Characteristic Curve," Discussion Papers 114, Aboa Centre for Economics.
    18. Wei Dai & Ming Yang & Chaolong Wang & Tianxi Cai, 2017. "Sequence robust association test for familial data," Biometrics, The International Biometric Society, vol. 73(3), pages 876-884, September.
    19. Zhang Zhiwei & Ma Shujie & Nie Lei & Soon Guoxing, 2017. "A Quantitative Concordance Measure for Comparing and Combining Treatment Selection Markers," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:899-911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.