IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v29y2017i2p407-424.html
   My bibliography  Save this article

Interval-wise testing for functional data

Author

Listed:
  • A. Pini
  • S. Vantini

Abstract

In the framework of null hypothesis significance testing for functional data, we propose a procedure able to select intervals of the domain imputable for the rejection of a null hypothesis. An unadjusted p-value function and an adjusted one are the output of the procedure, namely interval-wise testing. Depending on the sort and level α of type-I error control, significant intervals can be selected by thresholding the two p-value functions at level α. We prove that the unadjusted (adjusted) p-value function point-wise (interval-wise) controls the probability of type-I error and it is point-wise (interval-wise) consistent. To enlighten the gain in terms of interpretation of the phenomenon under study, we applied the interval-wise testing to the analysis of a benchmark functional data set, i.e. Canadian daily temperatures. The new procedure provides insights that current state-of-the-art procedures do not, supporting similar advantages in the analysis of functional data with less prior knowledge.

Suggested Citation

  • A. Pini & S. Vantini, 2017. "Interval-wise testing for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 407-424, April.
  • Handle: RePEc:taf:gnstxx:v:29:y:2017:i:2:p:407-424
    DOI: 10.1080/10485252.2017.1306627
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2017.1306627
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2017.1306627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    2. Livio Corain & Viatcheslav Melas & Andrey Pepelyshev & Luigi Salmaso, 2014. "New insights on permutation approach for hypothesis testing on functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 339-356, September.
    3. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    4. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    5. Alessia Pini & Simone Vantini, 2016. "The interval testing procedure: A general framework for inference in functional data analysis," Biometrics, The International Biometric Society, vol. 72(3), pages 835-845, September.
    6. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    7. Haiyan Wang & Michael Akritas, 2010. "Inference from heteroscedastic functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 149-168.
    8. Hervé Cardot & Luboš Prchal & Pascal Sarda, 2007. "No effect and lack-of-fit permutation tests for functional regression," Computational Statistics, Springer, vol. 22(3), pages 371-390, September.
    9. Huaihou Chen & Philip T. Reiss & Thaddeus Tarpey, 2014. "Optimally weighted L-super-2 distance for functional data," Biometrics, The International Biometric Society, vol. 70(3), pages 516-525, September.
    10. Dennis D. Cox & Jong Soo Lee, 2008. "Pointwise testing with functional data using the Westfall--Young randomization method," Biometrika, Biometrika Trust, vol. 95(3), pages 621-634.
    11. F. Ferraty & P. Hall & P. Vieu, 2010. "Most-predictive design points for functional data predictors," Biometrika, Biometrika Trust, vol. 97(4), pages 807-824.
    12. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    13. Aneiros, Germán & Vieu, Philippe, 2014. "Variable selection in infinite-dimensional problems," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 12-20.
    14. Peter Hall, 2002. "Permutation tests for equality of distributions in high-dimensional settings," Biometrika, Biometrika Trust, vol. 89(2), pages 359-374, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    2. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    3. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    4. Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    6. Agostino Torti & Alessia Pini & Simone Vantini, 2021. "Modelling time‐varying mobility flows using function‐on‐function regression: Analysis of a bike sharing system in the city of Milan," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 226-247, January.
    7. Todd Colin Pataky & Konrad Abramowicz & Dominik Liebl & Alessia Pini & Sara Sjöstedt Luna & Lina Schelin, 2023. "Simultaneous inference for functional data in sports biomechanics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 369-392, March.
    8. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    9. Kathrin Bissantz & Nicolai Bissantz & Katharina Proksch, 2021. "Nonparametric detection of changes over time in image data from fluorescence microscopy of living cells," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1001-1017, September.
    10. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    11. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    12. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    13. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
    14. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    15. Veronika Římalová & Alessandra Menafoglio & Alessia Pini & Vilém Pechanec & Eva Fišerová, 2020. "A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    2. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    4. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    5. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    6. Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019. "Optimal shrinkage estimator for high-dimensional mean vector," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
    7. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    8. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    9. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
    10. Berrendero, José R. & Bueno-Larraz, Beatriz & Cuevas, Antonio, 2019. "An RKHS model for variable selection in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 25-45.
    11. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Gina-Maria Pomann & Ana-Maria Staicu & Sujit Ghosh, 2016. "A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 395-414, April.
    14. Livio Corain & Viatcheslav Melas & Andrey Pepelyshev & Luigi Salmaso, 2014. "New insights on permutation approach for hypothesis testing on functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 339-356, September.
    15. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    16. Guochang Wang & Jianjun Zhou & Wuqing Wu & Min Chen, 2017. "Robust functional sliced inverse regression," Statistical Papers, Springer, vol. 58(1), pages 227-245, March.
    17. Lajos Horváth & Gregory Rice, 2015. "Testing Equality Of Means When The Observations Are From Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 84-108, January.
    18. Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
    19. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    20. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:29:y:2017:i:2:p:407-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.