IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v8y2014i3p339-356.html
   My bibliography  Save this article

New insights on permutation approach for hypothesis testing on functional data

Author

Listed:
  • Livio Corain
  • Viatcheslav Melas
  • Andrey Pepelyshev
  • Luigi Salmaso

Abstract

The permutation approach for testing the equality of distributions and thereby comparing two populations of functional data has recently received increasing attention thanks to the flexibility of permutation tests to handle complex testing problems. The purpose of this work is to present some new insights in the context of nonparametric inference on functional data using the permutation approach, more specifically we formally show the equivalence of some permutation procedures proposed in the literature and we suggest the use of the permutation and combination-based approach within the basis function approximation layout. Validation of theoretical results is shown by simulation studies. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Livio Corain & Viatcheslav Melas & Andrey Pepelyshev & Luigi Salmaso, 2014. "New insights on permutation approach for hypothesis testing on functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 339-356, September.
  • Handle: RePEc:spr:advdac:v:8:y:2014:i:3:p:339-356
    DOI: 10.1007/s11634-013-0162-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-013-0162-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-013-0162-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hervé Cardot & Luboš Prchal & Pascal Sarda, 2007. "No effect and lack-of-fit permutation tests for functional regression," Computational Statistics, Springer, vol. 22(3), pages 371-390, September.
    2. Sturino Joseph & Zorych Ivan & Mallick Bani & Pokusaeva Karina & Chang Ying-Ying & Carroll Raymond J & Bliznuyk Nikolay, 2010. "Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-21, August.
    3. Dennis D. Cox & Jong Soo Lee, 2008. "Pointwise testing with functional data using the Westfall--Young randomization method," Biometrika, Biometrika Trust, vol. 95(3), pages 621-634.
    4. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    5. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    6. Guanqun Cao & Lijian Yang & David Todem, 2012. "Simultaneous inference for the mean function based on dense functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 359-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. A. Pini & S. Vantini, 2017. "Interval-wise testing for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 407-424, April.
    3. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    4. Fabian J.E. Telschow & Michael R. Pierrynowski & Stephan F. Huckemann, 2021. "Functional inference on rotational curves under sample‐specific group actions and identification of human gait," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1256-1276, December.
    5. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
    6. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    7. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    8. Gina-Maria Pomann & Ana-Maria Staicu & Sujit Ghosh, 2016. "A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 395-414, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    2. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. A. Pini & S. Vantini, 2017. "Interval-wise testing for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 407-424, April.
    4. Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
    5. A. Debòn & S. Haberman & F. Montes & E. Otranto, 2012. "Model effect on projected mortality indicators," Working Paper CRENoS 201215, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    6. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    7. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    8. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    9. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    10. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    11. Vsevolozhskaya, O.A. & Greenwood, M.C. & Bellante, G.J. & Powell, S.L. & Lawrence, R.L. & Repasky, K.S., 2013. "Combining functions and the closure principle for performing follow-up tests in functional analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 175-184.
    12. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    13. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    14. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    15. Hsin‐wen Chang & Ian W. McKeague, 2022. "Empirical likelihood‐based inference for functional means with application to wearable device data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1947-1968, November.
    16. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    17. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    18. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    19. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    20. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:8:y:2014:i:3:p:339-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.