IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v107y2023i1d10.1007_s10182-021-00418-4.html
   My bibliography  Save this article

Simultaneous inference for functional data in sports biomechanics

Author

Listed:
  • Todd Colin Pataky

    (Kyoto University)

  • Konrad Abramowicz

    (Umeå University)

  • Dominik Liebl

    (University of Bonn)

  • Alessia Pini

    (Università Cattolica del Sacro Cuore)

  • Sara Sjöstedt Luna

    (Umeå University)

  • Lina Schelin

    (Umeå University)

Abstract

The recent sports science literature conveys a growing interest in robust statistical methods to analyze smooth, regularly-sampled functional data. This paper focuses on the inferential problem of identifying the parts of a functional domain where two population means differ. We considered four approaches recently used in sports science: interval-wise testing (IWT), statistical parametric mapping (SPM), statistical nonparametric mapping (SnPM) and the Benjamini-Hochberg (BH) procedure for false discovery control. We applied these procedures to both six representative sports science datasets, and also to systematically varied simulated datasets which replicated ten signal- and/or noise-relevant parameters that were identified in the experimental datasets. We observed generally higher IWT and BH sensitivity for five of the six experimental datasets. BH was the most sensitive procedure in simulation, but also had relatively high false positive rates (generally > 0.1) which increased sharply (> 0.3) in certain extreme simulation scenarios including highly rough data. SPM and SnPM were more sensitive than IWT in simulation except for (1) high roughness, (2) high nonstationarity, and (3) highly nonuniform smoothness. These results suggest that the optimum procedure is both signal and noise-dependent. We conclude that: (1) BH is most sensitive but also susceptible to high false positive rates, (2) IWT, SPM and SnPM appear to have relatively inconsequential differences in terms of domain identification sensitivity, except in cases of extreme signal/noise characteristics, where IWT appears to be superior at identifying a greater portion of the true signal.

Suggested Citation

  • Todd Colin Pataky & Konrad Abramowicz & Dominik Liebl & Alessia Pini & Sara Sjöstedt Luna & Lina Schelin, 2023. "Simultaneous inference for functional data in sports biomechanics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 369-392, March.
  • Handle: RePEc:spr:alstar:v:107:y:2023:i:1:d:10.1007_s10182-021-00418-4
    DOI: 10.1007/s10182-021-00418-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00418-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00418-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Pini & S. Vantini, 2017. "Interval-wise testing for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 407-424, April.
    2. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    3. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    4. Konrad Abramowicz & Charlotte K. Häger & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Simone Vantini, 2018. "Nonparametric inference for functional‐on‐scalar linear models applied to knee kinematic hop data after injury of the anterior cruciate ligament," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(4), pages 1036-1061, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
    2. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    3. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    4. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    5. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    6. Agostino Torti & Alessia Pini & Simone Vantini, 2021. "Modelling time‐varying mobility flows using function‐on‐function regression: Analysis of a bike sharing system in the city of Milan," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 226-247, January.
    7. Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    9. Veronika Římalová & Alessandra Menafoglio & Alessia Pini & Vilém Pechanec & Eva Fišerová, 2020. "A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    10. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    11. Hassan Sharghi Ghale-Joogh & S. Mohammad E. Hosseini-Nasab, 2021. "On mean derivative estimation of longitudinal and functional data: from sparse to dense," Statistical Papers, Springer, vol. 62(4), pages 2047-2066, August.
    12. Centofanti, Fabio & Fontana, Matteo & Lepore, Antonio & Vantini, Simone, 2022. "Smooth LASSO estimator for the Function-on-Function linear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    13. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    14. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    15. Cuthbertson, Keith & Nitzsche, Dirk & O'Sullivan, Niall, 2022. "Mutual fund performance persistence: Factor models and portfolio size," International Review of Financial Analysis, Elsevier, vol. 81(C).
    16. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    17. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    18. Kathrin Bissantz & Nicolai Bissantz & Katharina Proksch, 2021. "Nonparametric detection of changes over time in image data from fluorescence microscopy of living cells," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1001-1017, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:107:y:2023:i:1:d:10.1007_s10182-021-00418-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.