IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i5d10.1007_s10463-020-00771-2.html
   My bibliography  Save this article

Identifying shifts between two regression curves

Author

Listed:
  • Holger Dette

    (Ruhr-Universität Bochum)

  • Subhra Sankar Dhar

    (IIT Kanpur)

  • Weichi Wu

    (Tsinghua University)

Abstract

This article studies the problem whether two convex (concave) regression functions modelling the relation between a response and covariate in two samples differ by a shift in the horizontal and/or vertical axis. We consider a nonparametric situation assuming only smoothness of the regression functions. A graphical tool based on the derivatives of the regression functions and their inverses is proposed to answer this question and studied in several examples. We also formalize this question in a corresponding hypothesis and develop a statistical test. The asymptotic properties of the corresponding test statistic are investigated under the null hypothesis and local alternatives. In contrast to most of the literature on comparing shape invariant models, which requires independent data the procedure is applicable for dependent and non-stationary data. We also illustrate the finite sample properties of the new test by means of a small simulation study and two real data examples.

Suggested Citation

  • Holger Dette & Subhra Sankar Dhar & Weichi Wu, 2021. "Identifying shifts between two regression curves," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 855-889, October.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:5:d:10.1007_s10463-020-00771-2
    DOI: 10.1007/s10463-020-00771-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-020-00771-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-020-00771-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matzkin, Rosa L, 1991. "Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models," Econometrica, Econometric Society, vol. 59(5), pages 1315-1327, September.
    2. Arnab Maity, 2012. "A powerful test for comparing multiple regression functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 563-576.
    3. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    4. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    5. Engel, J & Kneip, A, 1995. "Model Estimation in Nonlinear Regression," Papers 9510, Catholique de Louvain - Institut de statistique.
    6. Cécile Durot & Piet Groeneboom & Hendrik P. Lopuhaä, 2013. "Testing equality of functions under monotonicity constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 939-970, December.
    7. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Zhou Zhou & Wei Biao Wu, 2010. "Simultaneous inference of linear models with time varying coefficients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 513-531, September.
    9. Härdle, W. & Marron, S.J., 1990. "Semiparametric comparison of regression curves," LIDAM Reprints CORE 890, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Ombao, Hernando & von Sachs, Rainer & Guo, Wensheng, 2005. "SLEX Analysis of Multivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 519-531, June.
    11. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    12. Olivier Collier & Arnak S, Dalalyan, 2013. "Curve registration by Nonparametric goodness-of-fit Testing," Working Papers 2013-33, Center for Research in Economics and Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Dette & Weichi Wu, 2020. "Prediction in locally stationary time series," Papers 2001.00419, arXiv.org, revised Jan 2020.
    2. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    3. Yining Chen & Richard J. Samworth, 2016. "Generalized additive and index models with shape constraints," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 729-754, September.
    4. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    5. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    6. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    7. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    8. Grith, Maria & Härdle, Wolfgang Karl & Park, Juhyun, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers 2009-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
    10. Gad Allon & Michael Beenstock & Steven Hackman & Ury Passy & Alexander Shapiro, 2007. "Nonparametric estimation of concave production technologies by entropic methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 795-816.
    11. Baillie, Richard T. & Kim, Kun Ho, 2015. "Was it risk? Or was it fundamentals? Explaining excess currency returns with kernel smoothed regressions," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 99-111.
    12. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
    14. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    15. Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.
    16. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    17. Zhibiao Zhao, 2015. "Inference for Local Autocorrelations in Locally Stationary Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 296-306, April.
    18. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    19. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    20. Gao, Jiti & Peng, Bin & Wu, Wei Biao & Yan, Yayi, 2024. "Time-varying multivariate causal processes," Journal of Econometrics, Elsevier, vol. 240(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:5:d:10.1007_s10463-020-00771-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.